一、解答题
何洁新歌
1.在平面直角坐标系中,已知长方形,点,. (1)如图,有一动点在第二象限的角平分线上,若,求的度数; (2)若把长方形向上平移,得到长方形. ①在运动过程中,求的面积与的面积之间的数量关系; ②若,求的面积与的面积之比.
2.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒.
张亮 模特(1)求证://AB DC ;
(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;
(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14
ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).
3.已知:AB ∥CD ,截线MN 分别交AB 、CD 于点M 、N .
(1)如图①,点B 在线段MN 上,设∠EBM =α°,∠DNM =β°30-a (β﹣60)2=0,求∠BEM 的度数;
(2)如图②,在(1)的条件下,射线DF 平分∠CDE ,且交线段BE 的延长线于点F ;请写出∠DEF 与∠CDF 之间的数量关系,并说明理由;
(3)如图③,当点P 在射线NT 上运动时,∠DCP 与∠BMT 的平分线交于点Q ,则∠Q 与∠CPM 的比值为                (直接写出答案).
4.已知:如图(1)直线AB 、CD 被直线MN 所截,∠1=∠2.
(1)求证:AB //CD ;
(2)如图(2),点E 在AB ,CD 之间的直线MN 上,P 、Q 分别在直线AB 、CD 上,连接PE 、EQ ,PF 平分∠BPE ,QF 平分∠EQD ,则∠PEQ 和∠PFQ 之间有什么数量关系,请直接写出你的结论;
(3)如图(3),在(2)的条件下,过P 点作PH //EQ 交CD 于点H ,连接PQ ,若PQ 平分∠EPH ,∠QPF :∠EQF =1:5,求∠PHQ 的度数.
王珞丹的图片5.已知,//AE BD ,A D ∠=∠.
五岁孩子的教育
(1)如图1,求证://AB CD ;
(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.
6.已知:AB //CD .点E 在CD 上,点F ,H 在AB 上,点G 在AB ,CD 之间,连接FG ,EH ,GE ,∠GFB =∠CEH .
(1)如图1,求证:GF //EH ;
(2)如图2,若∠GEH =α,FM 平分∠AFG ,EM 平分∠GEC ,试问∠M 与α之间有怎样的数量关系(用含α的式子表示∠M )?请写出你的猜想,并加以证明.
7.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解,并规定:()=n f x m
.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f =
= (1)填空:()6f =          ;()16=f            ;
(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值;
(3)填空:
①()22357f ⨯⨯⨯=            ;②()
42357f ⨯⨯⨯=              ; 8.规定两数a ,b 之间的一种运算,记作(a ,b ):如果c a b =,那么(a ,b )=c . 例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:
(3,27)=_______,(5,1)=_______,(2, 14
)=_______. (2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:
设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n
所以3x =4,即(3,4)=x ,
所以(3n ,4n )=(3,4).
请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30) 9.阅读型综合题
对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的  四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.
(1)若(),3L x y x y =+,则()2,1L =        ,31,22L ⎛⎫= ⎪⎝⎭
(2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请出;若没有,请说明理由. 10.阅读理解:
一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a 代表这个整数分出来的左边数,b 代表的这个整数分出来的中间数,c 代表这个整数分出来的右边数,其中a ,
b ,c 数位相同,若b ﹣a =c ﹣b ,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5;
413223分成三个数41,32,23,并且满足:32﹣41=23﹣32;
所以:357和413223都是等差数.
(1)判断:148    等差数,514335  等差数;(用“是”或“不是”填空)
(2)若一个三位数是等差数,试说明它一定能被3整除;
(3)若一个三位数T 是等差数,且T 是24的倍数,求该等差数T .
11.观察下列各式:21131222-
=⨯;21241333-=⨯;21351444
-=⨯;……根据上面的等式所反映的规律,
(1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
12.已知,在计算:()()12++++N N N 的过程中,如果存在正整数N ,使得各个数位均不产生进位,那么称这样的正整数N 为“本位数”.例如:2和30都是“本位数”,因为2349++=没有进位,30313293++=没有进位;15和91都不是“本位数”,因为15161748++=,个位产生进位,919293276++=,十位产生进位.则根据上面给出的材料:
(1)下列数中,如果是“本位数”请在后面的括号内打“√”,如果不是“本位数”请在后面的括号内画“×”.
106(  );111(  );400(  );2015(  ).
(2)在所有的四位数中,最大的“本位数”是  ,最小的“本位数”是  .
(3)在所有三位数中,“本位数”一共有多少个?
13.如图,已知点()0,0O ,()2,0A ,()1,2B -.
杭州中山南路美食街(1)求OAB 的面积;
2020抖音火爆昵称
(2)点C 是在坐标轴上异于点A 的一点,且OBC 的面积等于OAB 的面积,求满足条件的点C 的坐标;
(3)若点D 的坐标为()m,2,且1m <-,连接AD 交OB 于点E ,在x 轴上有一点F ,使BDE 的面积等于BEF 的面积,请直接写出点F 的坐标__________(用含m 的式子表示).
14.如图1,AB //CD ,点E 、F 分别在AB 、CD 上,点O 在直线AB 、CD 之间,且100EOF ∠=︒.
(1)求BEO OFD ∠+∠的值;
(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;
(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,
DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且
50FMN ENM ∠-∠=︒,直接写出m 的值.
15.如图,在平面直角坐标系中,已知△ABC,点A 的坐标是(4,0),点B 的坐标是(2,3),点C 在x 轴的负半轴上,且AC=6.
(1)直接写出点C 的坐标.
(2)在y 轴上是否存在点P ,使得S △POB =
23S △ABC 若存在,求出点P 的坐标;若不存在,请说明理由.
(3)把点C 往上平移3个单位得到点H ,作射线CH,连接BH ,点M 在射线CH 上运动(不与点C 、H 重合).试探究∠HBM ,∠BMA ,∠MAC 之间的数量关系,并证明你的结论.