解应用题时,首要任务是选设未知数,如何准确恰当地设未知数呢?没有固定的方法,但有一点是肯定的,那就是设未知数要有助于表示相关量,有助于简化解题过程。设什么元需要根据具体问题的条件确定,常见的设元方法有:直接设元法、间接设元法、整体设元法、辅助设元法等。那么在做题时又如何等量关系呢?抓住几个原则:(一).分析题中的不变量原则,利用不变量来列方程
(二).用不同的方式表示同一个量原则,以此得到相等关系,从而列出方程
(三)利用'总量等于各个分量之和”原则列方程
具体方法上可以利用平时掌握的一些公式等基本数量关系,也可以抓住问题中的和、差、倍、分关系中的关键词来寻相等关系。
以上所说,并不单指一元一次方程,所说的方法不可能全面,要学会每一部分知识仍需要同学们自己辛苦,多归纳,多总结,会用了才是你的方法。
一.直接设元法
1.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?
【分析】这道题我们抓住'小型车的车费十中型车的车费=总车费'这一关系列方程,具体设谁为未知数,哪种都可以.
解:设中型汽车有x辆,则小型汽车有(50一x)辆.根据题意,得
12x+8(50一x)=480
解得,x=20
则50一x=50一20=30.
答:中型汽车有20辆,小型汽车有30辆.
(1)和、差、倍、分问题
基本数量关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.
熊梓淇谭松韵抓住关键性的词语,多、少、倍、几分之几以及原有量、现有量之间的关系导出相等关系.
2.男、女生人数有若干人,男生与女生人数之比为4:3,后来走了12名女生,这时男生人数恰好是女生人数的2倍,求原来男生和女生的人数.
【分析】抓住关键词'男生人数恰好是女生人数的2倍”,也可以理解为女生人数恰好是男生人数的一半,等量关系是:男生人数=2(女生原有人数一走了的人数)或女生原来的人数一走了的人数=男生人数的一半.一般看见有比例关系的条件时,未知数设为一份数,所以.
解:设原来男生人数为4x人,则女生人数为3x人,根据题意,得
3x一12=(4x)/2
解得×=12.
原来男生人数为4x=48
原来女生人数为3x=36
答:原来男生人数为x人,原来女生人数为36人.
(2)体积变化问题
基本数量关系,常见几何图形的面积、周长、体积计算公式.等量关系有,形变体不变,即变形前的体积=变形后的体积;形变体积也变,但质量不变,即变形前的质量=变形后的质量.
3.用直径为4厘米的圆柱形钢材,铸造3个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圓柱形钢材?
【分析】等量关系是:铸造前圆柱形钢材的体积=铸造后三个圆柱的体积.
解:设需截取x厘米的圆柱形钢材,根据题意得
π(4/2)²x=3×π×(2/2)²×16
解得x=12.
答:需要截取12厘米的圓柱形钢材.
(3)行程问题
战友论坛这类问题比较复杂,基本数量关系为,路程=速度×时间.
①相向问题的等量关系为:甲走的路程+乙走的路程=两地距离.
阿杜撕夜歌词②追及问题的等量关系为:第一,同地不同时出发,前者走的路程=追者走的路程;第二,同时不同地出发,前者所走的路程+两地距离=追者所走的路程.
③航行问题基本数量关系:路程=速度×时间,顺水速度=静水速度十水流速度,逆水速度=静水速度一水流速度,静水速度=(顺水速度十逆水速度)/2,水流速度=(顺水速度一逆水速度)/2.寻等量关系时,抓住两码头之间距离不变,水流速度不变,船在静水中的速度不变的特点来考虑.
注意:行程问题,关注出发的时间、地点及行走的方式,往往画路线图,帮助分析等量关系,同时注意相遇和追击的区别.
4.小红骑车以每小时10km的速度从甲地到乙地,返回时因事绕路而行,比去时多走了8km,虽然速度增加到每小时12km,但比去时还是多用了10min,水甲、乙两地之间的距离.
【分析】注意单位统一,10min=1/6h.设甲、乙两地之间距离为xkm,则去时的时间为x/10,回来的时间为(x十8)/12,根据回来时间比去时多用了1/6h,可列方程
解:设甲、乙两地之间的距离为xkm,根据题意可得
你牛什么牛x/10+1/6=(x十8)/12
解得x=30
答:甲、乙两地之间的距离为30km.
中国集成灶十大品牌5.一艘轮船从A港到B港顺水航行需要4.5小时,从B港到A港逆水航行需要6小时,已知水流速度为每小时2千米,求船在静水中的速度.
【分析】抓住,从A港到B港顺水航行的路程=从B港到A港逆水航行的速程不变.
952211是什么电话解:船在静水中的速度为x千米/时,则船在逆水航行的速度为(x一2)千米/时,船在顺水航行的速度为(x+2)千米/时,依题意得
4.5(x+2)=6(x一2)
解得x=14.
答:船在静水中的速度为14千米/时.
(4).劳动力调配问题
将一处的人员调往另一处,一处的人数减少多少,另一处的人数会增加多少,两处的人数之间往往存在着倍分关系,可从题意中的关键性词语等量关系
6.铸造车间共有工人86人,若每人每天加工A种零件15个或B种零件12个或C种零件9个,应怎样按排加工三种零件的人数,才能使加工后的零件按3个A种零件,2个B种零件和1个C种零件配套?
【分析】等量关系是:加工A种零件的人数十加工B种零件的人数+加工C种零件的人数=86.设有x人加工A种零件,因为3个A零件,2个B零件和1个C零件配套,所以最后A种零件:B种零件:C种零件=3:2:1,也就是15x:(12×加工B种零件的人数):(9×加工C种零件的人数)=3:2:1.所以加工B种零件的人数为5x/6人,加工C种零件的人数为5x/9人.(必须学会这种用未知数表示相关的量).
解:设按排加工A种零件为x人,根据题意得,x十5x/6+5x/9=86
解得x=36
加工B种零件人数为:5x/6=30
加工C种零件人数为:5x/9=20
答:安排36人加工A种零件,30人加工B种零件,20人加工C种零件.
(5).利润问题
基本数量关系为:商品利润=商品售价一商品进价,利润率=利润/进价×100%,销售额=成本(进价)×(1+利润率).
发布评论