【考点精讲】
【典例精析】
例题1 如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于点E,PF⊥AC于点F,M为EF中点。设AM的长为x,试求x的最小值。
答案:解:连接AP,∵AB=6,AC=8,BC=10,∴AB2+ACdnf纯净的灵魂气息2=36+64=100,BC2=100,∴AB2+AC2=BC2,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠AEP=∠AFP=∠BAC=90°,∴四边形AEPF是矩形,∴AP=EF,∵∠BAC=90°,M为EF中点,∴AM=EF=AP,当AP⊥BC时,AP值最小,此时S△BAC=×6×8=×10×AP,AP=4.8,即x的最小值为2.4。
点评:本题考查了垂线段最短,三角形面积,勾股定理的逆定理,矩形的判定等的应用,关键是求出AP的最小值和得出AM与AP的数量关系。
例题2 请看下面小明同学完成的一道证明题的思路:
如图1,已知△ABC中,AB=AC,CD⊥AB,垂足是D,P是BC边上任意一点,PE⊥火影忍者晓的成员AB,PF⊥AC,垂足分别是E、F。求证:PE+PF=CD。
证明思路:如图2,过点P作PG∥AB交CD于点G,则四边形PGDE为矩形,PE=GD;又可证△PGC≌△CFP,则PF=CG;所以PE+PF=DG+GC=DC。
如图3,若P是BC延长线上任意一点,其他条件不变,则PE、PF与CD有何关系?请你写出结论并完成证明过程。
思路导航:采用与题目相同的思路,过点C作CG⊥PE,利用矩形的性质和全等三角形的性质确定PE、PF、CD之间的关系。
答案:结论:PE-PF=CD。
证明:过点C作CG⊥PE于点G,∵PE⊥AB,CD⊥AB,∴∠CDE=∠DEG=∠香椿炒蛋EGC=90°。∴四边形CGED为矩形。∴CD=GE,GC∥AB。∴∠GCP=∠B。∵AB=AC,∴∠王珂演过的电视剧B=∠ACB。∴∠FCP=∠ACB=∠B=∠GCP。在△PFC和△PGC中,∠韩国三级女星F=∠CGP=90°,∠FCP=∠GCP,CP=CP,∴△PFC≌△PGC(AAS)。∴PF=PG。∴PE-PF=PE-PG=GE=CD。
点评:本题通过构造矩形和三角形全等,利用矩形和全等三角形的判定和性质求解。解答这类阅读理解问题,读懂题目提供的解题思路是解题关键。
例题3 如图,已知△ABC中,AB=AC,∠BAD=∠CAD,F为BA延长线上的一点,AE平分∠FAC,DE∥AB交AE于点E。
(1)求证:AE∥BC;
(2)求证:四边形AECD是矩形;
(3)BC=6cm,SAECD=12cm2,求AB的长。
思路导航:(1)先根据已知条件求出AD⊥BC,再根据AE平分∠FAC,得出∠EAD=90°,从而证出AE∥BC;(2)先判定四边形AECD是平行四边形,再根据∠ADC=90°,证出四边形AECD是矩形;(3)由BC=6cm,得出CD=3cm,再根据SAECD=12cm2,得出AD=4,利用勾股定理求出AC的长即可。
答案:(1)证明:∵AB=AC,∠BAD=∠CAD,∴AD⊥BC,∴∠ADB=90°,∵AE平分∠FAC,∠FAE+∠EAC+∠CAD+∠BAD=180°,∴∠EAC+∠CAD=∠EAD=90°,∴AE∥BC;
(2)证明:∵DE∥AB,AE∥BC,∴四边形ABDE是平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形AECD是平行四边形,∵∠ADC=90°,∴四边形AECD是矩形;
(3)解:∵BC=6cm,∴CD=3cm,∵SAECD=12cm2,∴AD=4,∴AB=AC==5,∴AB的长是5cm。
点评:此题考查了矩形的判定和性质的综合应用,用到的知识点是平行四边形的判定与性质、等腰三角形的性质、平行线的性质、勾股定理等,这类问题一般要综合利用各种有关性质,是中考命题的热点。
【总结提升】
1. 关于矩形的判定:
①有一个角是直角的平行四边形是矩形。②对角线相等的平行四边形是矩形。③有三个角是直角的四边形是矩形。④对角线相等且互相平分的四边形是矩形。
说明:长方形和正方形都是矩形。
2. 关于矩形的性质:
①矩形的4个内角都是直角;②矩形的对角线相等且互相平分;③矩形既是轴对称图形,也
是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。④矩形具有平行四边形的所有性质。
3. 矩形的对角线把自身分成若干个直角三角形和等腰三角形,因此很多矩形问题都可以转化成直角三角形或等腰三角形的问题加以解决。
直角三角形的重要性质主要有:
①直角三角形斜边上的中线等于斜边的一半;②直角三角形两锐角互余;③勾股定理;④直角三角形中30°角所对的直角边等于斜边的一半。
(答题时间:20分钟)
一、选择题
1. 下列关于矩形的说法,正确的是( )
A. 对角线相等的四边形是矩形
B. 对角线互相平分的四边形是矩形
C. 矩形的对角线互相垂直且平分
D. 矩形的对角线相等且互相平分
*2. 如图,在△ABC中,AB=8,BC=6,AC=10,D为边AC上一动点,DE⊥AB于点E,DF⊥BC于点F,则EF的最小值为( )
A. 2.4 B. 3 C. 4.8 D. 5
**3. △ABC中,AB=AC=5,BC=6,点D是BC上的一点,那么点D到AB与AC的距离的和
为( )
A. 5 B. 6 C. 4 D.
二、填空题
4. 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点。若DE=5,则AB的长为__________。
*5. 如图所示,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是__________。
三、解答题
*6. 已知:如图所示,D是△ABC中AB边上的中点,△ACE和△BCF分别是以AC、BC为斜边的等腰直角三角形,连接DE、DF。求证:DE=DF。
**7. 如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG。
发布评论