真正的西部大开发应开发哪里?应从啥开始着手开发?

我认为,真正的西部大开发,就是开发塔里木、柴达木、准葛尔三大盆地和腾格里、巴丹吉林、毛乌素和浑善达克四大沙漠;开发这七大沙漠戈壁,应从水、电开始着手;一句话,就是:搞南水北调、藏水北调!

这七处沙漠戈壁都是一马平川,都是宝地啊!只要有水,都能成为塞外江南!只要有水,每个地方建一个国家都是够的!日本有这样的好地方吗?以列比其中哪个大?光一个巴丹吉林沙漠,只要水够,容下2亿人都没问题,塔里木盆地起码能容4~5亿人。中国人可别守着宝地不当宝啊!

调水经过柴达木时,可以大幅扩大盆内湖泊水面;在阿尔金山脚下,还将形成一个面积达2万平方公里、库容600亿以上的大湖;

当调水1000亿进塔里木后,大量的水流终将汇入罗布泊,古泊将很快重现生机、并扩大为海。

到那时,罗布泊就该叫“罗布海”,塔里木将遍地是绿洲了!

以下是本人对大量资料综合整理、周密计算、反复推敲后成文的,并附有调水线路图。虽不是我首创,可也不算转帖。转此贴者,须注明原编创者——太空激光,呵呵~~

一、藏水北调线路图说明:

1、红线:南水北调调水线路图,共五条线路。除东线工程为提水外,其余各线全部为自流。另附有东北水系向南的调水线。

陈思媛2、蓝线:与南水北调调水线配套的输水干渠。除向毛乌素沙地和浑善达克沙漠为提水灌渠外,其余全部为自流干渠。
王志飞主演的电视剧
3、沿线有大中型水库和水电站,图中不便标出。

4、藏水北调(即南水北调大西线),分别有高、中、低三种海拔线路方案。输水目的地主要是四大沙漠和两大沙地。全部调水干线和输水渠网的工程总造价在6万亿以上。三条调水线路及配套输水渠网的建设工期,如分先后依次实施,从2050年算起历时约30年。

网购哪里好
无锡中考总分以下主要介绍大西线的三条调水线路及其配套的“输水主干渠网”:

二、大西线三条线路详解:

高海拔调水线(张世禧隧道):

即藏西高原引水隧道。隧道入口在西藏雅鲁藏布江谢通门大坝,海拔高4350米,隧道出口位于喀拉米兰山口,海拔约4000米,出入口有效落差350米。隧道出口水电站装机330万千瓦。全线每隔40公里打竖井一座,竖井深在350米至400米之间,20座竖井各自向两边反向开挖。全线并行三条隧道,第一条随道的每段打通后,可横向开挖并转移设备,紧接着同时开挖另外两条隧道。全线总长约780公里年、调水总量300亿立方米。

从隧道出口下到盆地,有效落差约应不低于2700米(实际落差应有2750米以上),可利用隧道出口下游的输水河渠,建几座大型梯级水电站,总装机2500万千万(加出口电站共2800多万千瓦)。河渠大坝、发电站、调水隧道线同步施工,总工期8年,总投资4000亿元人民币。该工程年发电不少于2000亿度、年电费总收入约700多亿元,仅靠电费收入,约7年即可收回全部投资。

中海拔调水线(袁嘉祖郭开线):

在雅江桑日处(朔马滩?海拔3490米)筑坝(海拔3588米)引水,经怒江、谰沧江、通天河、雅砻江等江河上游,沿途筑10座高坝截水,在海拔约3300米处出隧道而入黄河(原意是在贾曲河口3340米处入黄河,本文改为:隧道加长,使出口在黄河下游3300处);此线调水全程约 1800公里(直线距离约800公里),开挖隧道7座(含桃河分流隧道),隧道长度共70~100公里。总调水量近1200亿立方米、全程自流。沿线可利用有效落差280米,建7~8座大中型水电站、总装机不少于2000万千瓦(不含各江河壅水坝下泄水流的发电)。

再在黄河干流海拔3300米以下、龙羊峡水库(坝顶高程2600米)以上,建3~5座大型梯级水库电站,装机1100万千瓦。

另在3300米高程以下的第一座梯级水库(水位高程约3280米)内、在海拔3200~3250米的河岸边坡处,向东西两个方向各打分流隧道(西向分流700亿立方米输入柴达木盆地,在此不提),东向分流入桃河,隧道出口处高程2700米,水头落差近600米;再下泄到入黄口处的刘家峡水库大坝(坝顶高程1735米),还有落差近1000米。在分流线路上,总的有效落差不低于1500米,可同时建造几座大型梯级水库,共装机1400 万千瓦。

全部电站总共装机4500万千瓦、年发电量(不含下游已建电站加力部分)3000多亿度、年电费收入1000多亿。全部工程坝、站、洞线同步建设,总工期8年,总投资6000亿。主要靠电费收入(不含龙羊峡、拉西瓦、李家峡等电站因水量增加而增收的部分)约7年就收回全部投资。

低海拔调水线:

即翁定线加西沿线——从雅江大拐弯处(河床海拔2880米)筑坝(坝顶高程海拔3000米以上)引水过怒谰两江后(海拔2500米)入金沙江,接翁定线。

翁定线,即翁水河口(海拔2300米)沿等高线附近(逐渐有所倾斜)、过川西诸河流,到甘肃定西(海拔约1400米)入黄河。进定西前,还有一支线入渭河济关中。

低海拔调水全线3600多公里,沿线年截调水量约2000亿立方米,建10座大型壅水坝,利用沿线约1500多米的有效落差,建大中型水电站10余座,共装机3000万千瓦以上(不含各江河壅水坝下泻水流的发电),年发电量不少于2000亿度,年电费收入不少于700个亿。

在雅江大拐弯上游的派乡河段,其与墨脱背崩处(海拔630米)之间的有效落差不低于2300米(直线距离40公里),可打洞引水发电,总装机4000万千瓦(也可分两个梯级建设、相当于两个三峡电站装机容量,但发电量不如)。如下泄水流(即非调水流)按年600亿立方算(雅江大拐处常年径流量1600多亿立方米),年发电量可达3200亿度、年电费收入不少于1000亿。

全部工程坝、站、洞线同步建设,总工期8~10年,总投资约10000个亿。仅靠电费收入7年可收回全部投资。
大西线调水难以实现的若干问题分析
大西线调水工程是郭开先生在“朔天运河方案”中提出的。据称:计划从雅鲁藏布江上的朔玛滩水库(水位海拔3588米)开始调水,千年跋涉流入黄河(水位3366米),落差222米。全程由高向低(由南向北)自流,经一系列的高坝水库、输水渠、隧洞、倒虹吸,串联“五江一河”(雅鲁藏布江、怒江、澜沧江、金沙江、雅砻江、大渡河与黄河),每年拟将2006亿立方米的“藏水”引到黄河中。因为可以利用“西藏之水救中国”,所以“具有十分可观的社会、经济和生态效益”,“引起了各界的广泛重视”。
一、大西线工程方案的基本内容与有关数据
大西线从雅鲁藏布江到黄河,地图直线距离760公里,实际长度大约为1239公里。第一期工程是调“藏水”入黄。该方案已有多次修改,大致项目包括19座高坝水库(总库容2888亿立方米,设计总引水量为2006亿立方米)、8条隧洞(总长240公里,最长的隧洞60公里,短的6公里)、9座水电工程(总装机容量2120万千瓦)、600公里引水集水渠(其中集水渠200公里,渠库89座)、6个倒虹吸工程(10个汇水池)。
第二期工程从拉加峡水库沿3338~3218米等高线引水入青海湖。青海湖水面将升高24米,水面海拔高度将达到3218米,水面面积将增至1万平方公里,总蓄水量将达到3689亿立方米。然后,以青海湖为调节库,向新疆、内蒙、河北等地调水,利用落差建立一系列规模宏大的发电工程。
第一期工程拟调水1680亿立方米,投资1250亿元(2004年价),工期5年。第二期工程投资1000亿元,沿途平行增添调水渠道与隧道,工期5年,通过扩容改造,达到每年调水2006亿立方米的规模。
据《西藏之水救中国》说:“这段线路两岸皆是人烟稀少的山区,河水全部自流,可实行定向爆破,施工容易,不怕地震。”“专家报告认为,这里多数为‘V’型峡谷,采用筑坝引水,原料充足,很适合定向爆破筑坝,造价低廉。”
由此可知,大西线工程19座高坝水库是采用“定向爆破筑坝”(定向爆破堆石坝)技术修建的,那么这种技术的内容与特点是什么呢?
定向爆破堆石坝是在地形、地质条件适当的河谷的一岸或两岸布置室,使爆破产生的
岩快,大部分抛掷到预定的位置堆积成坝,拦截河道。爆破抛射出的石块,下落时以高速填入堆石体,孔隙率可在28%以下。抛填的堆石坝,坝体的密实度较低,建成后有较大的沉陷,容易造成防渗体破坏而引起坝体漏水。此外,爆破对山体的破坏作用较大,使两岸岩体内的裂缝加宽,有时可形成绕坝渗流通道,并可使隧洞、溢洪道周围的地质条件以及岸坡的稳定条件恶化。因此,爆破后填平补齐、整修清理、防渗堵漏的工作量仍然很大,坝基处理与防渗体施工均有一定困难。这种坝型主要适用于山高、坡陡、窄河谷以及地质条件良好的中、小型工程。
二、大西线调水方案难以实现的若干关键因素分析
大西线第一期工程的全线调水高度在海拔3588~3366米之间。要在如此高度的高海拔地区,实现所谓的自流调水,主要是通过建立高坝,形成长距离的回水,尽量利用天然河道,减少人工开挖工程;回水的高度,决定了超长隧道进水口的施工高度,通过一系列超长隧道(以及明渠、倒虹吸),把19座水库串联起来。其中:易贡藏布(八盖)、朔瓦巴、金沙江、两河口、拉加峡等5座水库的大坝高度为356~389米,10个大坝的高度为218~298米。这些大坝,要建在水流湍急的“V”字形峡谷里,由于采用定向爆破堆石坝技术,
不是在预先清理和加固地基的基础上,由下而上进行精心施工。在堆石坝的最大孔隙率可接近28%的不利因素制约下,这种缺少坚实根基、堆石仅仅虚压于河床之上的大坝,要实现所谓的调水功能,显然是靠不住的。
(1)高坝的安全性问题。诸如356~389米的高坝,缺少宽度、厚度、地基稳定性等数据。需要定向爆破并削平多大的山体?是否会造成或拓展两岸岩体与地层内的裂缝、断层?众所周知,长江三峡大坝是巨型的钢筋混凝土重力坝,混凝土浇筑总量2794万立方米,钢筋46.30万吨,总浇筑时间为3080天,坝顶高程185米,总库容393亿立方米。大西线朔瓦巴水库的库容为1000~1188亿立方米,金沙江、百巴(尼洋河)水库与拉加峡水库分别要达到200~488亿立方米,它们大坝的高度是三峡大坝高度的2倍,而大坝的安全性远远低于三峡大坝,且库容要比三峡水库大。巨大的库容(水压),将对缺失根基的堆石坝产生强大的压力,如果造成垮坝,后果将不堪设想。
(2)堆石坝漏水问题。堆石坝爆破物主要是大小不等、形态各异的岩块,坝体必然存在一定的孔隙;两岸岩体和地层中,也可能存在天然的裂缝、解理、断层与层理,甚至隐藏喀斯特构造。靠爆破形成高度为218~389米的15座堆石坝体,不知打算采取什么技术来防止
库水渗漏?这么高的坝体,目前未闻有可靠的防漏技术,不同高度渗出的水流,将形成数百米高的瀑布或水帘景观。两岸岩体内的裂缝、解理、断层与层理,造成的渗透水通道,也可导致绕坝渗流。
(3)能否达到蓄水水位和隧道进水口的水位问题。堆石坝通过壅高水位,造成长距离回水,经由隧道流入下一个水库。已知百巴水库,回水流程148公里;易贡藏布(八盖)水库,回水流程50公里;朔瓦巴水库,回水流程256公里;扎曲水库,回水流程100公里;金沙江联合大水库,回水流程136公里;甘孜水库,回水流程118公里;两河口水库,回水流程86公里;拉加峡水库,回水300公里到贾曲口。如果19座水库中,有一个或若干个高坝出现漏水,回水(壅水)水位无法达到隧道入口的引水高度,那么整个调水链条就会出现一处或多处中断,调水将无法进行。估计最可能的发生情形是,由于高坝无法阻止漏水,结果营造出一系列深度不等的湖泊,壅水水位比预期隧道进水口的高度低,调水成为泡影。
(4)引水渠、集水渠以及隧道的宽度、深度问题。拟调水1000~2006亿立方米,引水渠、集水渠以及隧道的口径需要多大?14~25米的孔径,每年能通过1000~2006亿立方米的流
量吗?如果受冬季严寒的影响,无法实现全年不间断调水,是不是还要拓宽引水渠、集水渠以及隧道的口径?
(5)倒虹吸的跨度与口径问题。倒虹吸是一种类似英文“U”字形的连通管,虹吸现象是液态分子间引力与位能差所造成的,即利用水柱压力差,使水上升后再流到低处。由于管口水面承受不同的大气压力,水会由压力大的一边流向压力小的一边,直到两边的大气压力相等,连通管内的水面变成相同的高度,水就会停止流动。倒虹吸最常见问题是漏水。为了确保产生压力差,连通管必须具备很好的密封性。可是,受施工技术的限制,倒虹吸(连通管)难以有很长的跨度与口径。大西线拟上马6个倒虹吸工程,过水流量1000~2006亿立方米,那么倒虹吸输水管的跨度(长度与规模)有多大?需要多大的口径?如此大的调水量,可能倒虹吸是无法胜任的。
qq网名伤感男生
(6)入黄前,沿途水电站的建设问题。一般来说,水库与电站是相互配套的一体化工程。据称:大西线“采用在最佳的垭口中开凿短程隧洞的办法……可利用落差发电”,“大朔天运河工程的水电装机能力在1.76亿千瓦以上”。遗憾的是,诱人的前景背后缺少严肃的科学论证,入黄前诸水电站的选址在哪里?能够采用堆石坝技术建水电站吗?已知从朔玛滩水库
(海拔3588米)至黄河支流(3366米),全长1239公里,总高差222米,平均每10公里只有1.8米的落差。除长距离自流调水,必须维持一定的落差外,从隧洞出口跌入水库的流水落差,其实将所剩无几,请问有多少落差可供9座(隧道出口)水电站来发电?9座水电站工程(总装机容量2120万千瓦)用5年时间能够同时建成吗?
天秤座和什么星座最配
(7)冻土地带施工、高原地震以及冬季调水问题。处于青藏高原海拔3588~3366米高程的、长达1239公里的调水渠道,高寒冻土地带对施工及建成后的渠道有何影响?青藏高原地震带对渠道会不会产生影响?在严寒的冬季(通常夏季晚上的气温也常在零度以下)是否能够调水?对调水的数量是否有影响?
(8)泥石流与季节性来水问题。在多雨的v字型峡谷地区调水,山体滑坡、泥石流对引水渠、集水渠、倒虹吸有何影响?试图通过引水渠、集水渠,拦集密如蛛网般的小支流,但是区内河流来水量,不是均量的(冬季高原冰川停止消融,夏季消融多),汛期来水多、非汛期来水少,那么输水渠道的口径,要按多大来设计?漫长的引水渠道可否抗御汛期洪水(泥石流)的袭击?季节性来水对水库一年四季的水位(回水)高程以及隧道进水口高程有何影响?对受季节性制约的引水渠道,如何来保证调水能力与防洪能力?
值得注意的是,如果大西线明显受调水季节的制约,当夏季大西线来水量超大时,恰恰也是长江、黄河步入防汛期,如何处理调水应该有一定的时间差问题?如果要靠大西线建立的19座大型堆石坝水库来调节,是不是还要大大地加高堆石坝的高度?