R语⾔学习-箱线图(⼩提琴图、抖动图、区域散点图)
箱线图
箱线图是能同时反映数据统计量和整体分布,⼜很漂亮的展⽰图。在2014年的Nature Method上有2篇Correspondence论述了使⽤箱线图的好处和⼀个在线绘制箱线图的⼯具。就这样都可以发两篇Nature method,没天理,但也说明了箱线图的重要意义。
下⾯这张图展⽰了Bar plot、Box plot、Volin plot和Bean plot对数据分布的反应。从Bar plot上只能看到数据标准差或标准误不同;Box plot 可以看到数据分布的集中性不同;Violin plot和Bean plot展⽰的是数据真正的分布,尤其是对Biomodal数据的展⽰。
Box plot从下到上展⽰的是最⼩值,第⼀四分位数 (箱⼦的下边线)、中位数 (箱⼦中间的线)、第三四分位数 (箱⼦上边线)、最⼤值,具体解读看这⾥。
⼀步步解析箱线图绘制
profile="Name;2cell_1;2cell_2;2cell_3;4cell_1;4cell_2;4cell_3;zygote_1;zygote_2;zygote_3秦朝历代皇帝
A;4;6;7;3.2;5.2;5.6;2;4;3
B;6;8;9;5.2;7.2;7.6;4;6;5
C;8;10;11;7.2;9.2;9.6;6;8;7
D;10;12;13;9.2;11.2;11.6;8;10;9
E;12;14;15;11.2;13.2;13.6;10;12;11
F;14;16;17;13.2;15.2;15.6;12;14;13
G;15;17;18;14.2;16.2;16.6;13;15;14
H;16;18;19;15.2;17.2;17.6;14;16;15
I;17;19;20;16.2;18.2;18.6;15;17;16
J;18;20;21;17.2;19.2;19.6;16;18;17
L;19;21;22;18.2;20.2;20.6;17;19;18
M;20;22;23;19.2;21.2;21.6;18;20;19
N;21;23;24;20.2;22.2;22.6;19;21;20
O;22;24;25;21.2;23.2;23.6;20;22;21"
读⼊数据并转换为ggplot2需要的长数据表格式
profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)
# 在melt时保留位置信息
# melt格式是ggplot2画图最喜欢的格式
# 好好体会下这个格式,虽然多占⽤了不少空间,但是确实很⽅便
library(ggplot2)
library(reshape2)
data_m <- melt(profile_text)
head(data_m)
variable value
1 2cell_1 4
2 2cell_1 6
3 2cell_1 8
姜虎东老婆4 2cell_1 10
5 2cell_1 12
6 2cell_1 14
像往常⼀样,就可以直接画图了。
# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) +
geom_boxplot() +
=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前⽬录的Rplots.pdf⽂件中,如果⽤Rstudio,可以不运⾏dev.off()
dev.off()
箱线图出来了,看上去还可以,再加点⾊彩
# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) +
geom_boxplot(aes(fill=factor(variable))) +
=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前⽬录的Rplots.pdf⽂件中,如果⽤Rstudio,可以不运⾏dev.off()
dev.off()
再看看Violin plot
# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) +
geom_violin(aes(fill=factor(variable))) +
=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前⽬录的Rplots.pdf⽂件中,如果⽤Rstudio,可以不运⾏dev.off()
dev.off()
还有Jitter plot (这⾥使⽤的是ggbeeswarm包)
library(ggbeeswarm)
# 为了更好的效果,只保留其中⼀个样品的数据
# grepl类似于Linux的grep命令,获取特定模式的字符串
data_m2 <- data_m[grepl("_3", data_m$variable),]
# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m2, aes(x=variable, y=value),color=variable) +
geom_quasirandom(aes(colour=factor(variable))) +
theme_bw() + id.major = element_blank(),
theme(legend.position="none")
# 也可以⽤geom_jitter(aes(colour=factor(variable)))代替geom_quasirandom(aes(colour=factor(variable)))
# 但个⼈认为geom_quasirandom给出的结果更有特⾊
ggsave(p, filename="jitterplot.pdf", width=14, height=8, units=c("cm"))
绘制单个基因 (A)的箱线图
为了更好的展⽰效果,下⾯的矩阵增加了样品数量和样品的分组信息。
profile="Name;2cell_1;2cell_2;2cell_3;2cell_4;2cell_5;2cell_6;4cell_1;4cell_2;4cell_3;4cell_4;4cell_5;4cell_6;zygote_1;zygote_2;zygote_3;zygote_4;zygote_5;zygote_6 A;4;6;7;5;8;6;3.2;5.2;5.6;3.6;7.6;4.8;2;4;3;2;4;2.5
B;6;8;9;7;10;8;5.2;7.2;7.6;5.6;9.6;6.8;4;6;5;4;6;4.5"
profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)
data_m = data.frame(t(profile_text['A',]))
data_m$sample = rownames(data_m)王菲怀孕张柏芝痛哭
# 只挑选显⽰部分
# grepl前⾯已经讲过⽤于匹配
data_m[grepl('_[123]', data_m$sample),]
获得样品分组信息 (这个例⼦⽐较特殊,样品的分组信息就是样品名字下划线前⾯的部分)
# 可以利⽤strsplit分割,取出其前⾯的字符串
# R中复杂的输出结果多数以列表的形式体现,在之前的矩阵操作教程中
# 提到过⽤str函数来查看复杂结果的结构,并从中获取信息
group = unlist(lapply(strsplit(data_m$sample,"_"), function(x) x[1]))
data_m$group = group
data_m[grepl('_[123]', data_m$sample),]
如果没有这个规律,也可以提到类似于下⾯的⽂件,指定样品所属的组的信息。
sampleGroup_text="Sample;Group
zygote_1;zygote
徐娇是谁的女儿zygote_2;zygote
zygote_3;zygote
zygote_4;zygote
zygote_5;zygote
zygote_6;zygote
2cell_1;2cell
2cell_2;2cell
2cell_3;2cell
2cell_4;2cell
2cell_5;2cell
2cell_6;2cell
4cell_1;4cell
狐小幂4cell_2;4cell
4cell_3;4cell
4cell_4;4cell
4cell_5;4cell
4cell_6;4cell"
#sampleGroup = read.table(text=sampleGroup_text,sep="\t",header=1,check.names=F,row.names=1)
#data_m <- merge(data_m, sampleGroup, by="row.names")
# 会获得相同的结果,脚本注释掉了以免重复执⾏引起问题
矩阵准备好了,开始画图了 (⼩提琴图做例⼦,其它类似)
# 调整下样品出现的顺序
data_m$group <- factor(data_m$group, levels=c("zygote","2cell","4cell"))
# group和A为矩阵中两列的名字,group代表了值的属性,A代表基因A对应的表达值。
# 注意看修改了的地⽅
p <- ggplot(data_m, aes(x=group, y=A),color=group) +
geom_violin(aes(fill=factor(group))) +
=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前⽬录的Rplots.pdf⽂件中,如果⽤Rstudio,可以不运⾏dev.off()
长矩阵绘制箱线图
常规矩阵绘制箱线图要求必须是个⽅正的矩阵输⼊,⽽有时想⽐较的⼏个组⾥⾯检测的值数⽬不同。⽐如有三个组,GrpA组检测了6个病⼈,GrpB组检测了10个病⼈,GrpC组是12个正常⼈的检测数据。这时就很难形成⼀个⾏位检测值,列为样品的矩阵,长表格模式就适合与这种情况。
long_table <- "Grp;Value
GrpA;10
GrpA;11
GrpA;12
GrpB;5
GrpB;4
GrpB;3
GrpB;2
GrpC;2
GrpC;3"
long_table <- read.table(text=long_table,sep="\t",header=1,check.names=F)
p <- ggplot(long_table, aes(x=Grp, y=Value),color=Grp) +
geom_violin(aes(fill=factor(Grp))) +
=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
演员齐奎长表格形式⾃⾝就是常规矩阵melt后的格式,这种⽤来绘制箱线图就很简单了,就不做解释了。
发布评论