2022年宁夏中考数学试卷
一、选择题
1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )
A.10℃ B.﹣10℃ C.6℃ D.﹣6℃
2.下列计算正确的是( )
A. +=B.(﹣a2)2=﹣a4
C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)
3.已知x,y满足方程组,则x+y的值为( )
A.9 B.7 C.5 D.3
A.2和1 B.1.25和1 C.1和1 D.1和1.25
5.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为( )
A.2B. C.6D.8
6.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是( )
A.3 B.4 C.5 D.6
7.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是( )
甲 | 乙 | 丙 | 丁 | |
2022今日高考 | 8.9 | 9.5 | 9.5 | 孟桐8.9 |
s2 | 0.92 | 0.92 | 1.01 | 1.03 |
黑枸杞子的功效与作用 | 杨瑞代 |
A.甲 B.乙 C.丙 D.丁
8.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是( )
A.x<﹣2或x>2 B.x<﹣2或0<x<2
C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2
二、填空题(本题共8小题,每小题3分,共24分)
9.分解因式:mn2﹣m= .
10.若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是 .
11.实数a在数轴上的位置如图,则|a﹣3|= .
12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 .
13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于 .
14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为 .
15.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是 .
16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为 .
三、解答题(本题共6道题,每题6分,共36分)
17.解不等式组.
18.化简求值:(),其中a=2+.
19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)
(1)画出△ABC关于原点O成中心对称的△A1B1C1;
(2)画出△A1B1C1关于y轴对称的△A2B2C2.
长跑 | 短跑 | 跳绳 | 山姆士跳远 | |
200 | √ | 丈夫超威猛× | √ | √ |
300 | × | √ | × | √ |
150 | √ | √ | √ | × |
200 | √ | × | √ | × |
150 | √ | × | × | × |
(1)估计学生同时喜欢短跑和跳绳的概率;
(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;
(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?
21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.
22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.
发布评论