2022年宁夏中考数学试卷
一、选择题
1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是(  )
A.10℃ B.﹣10℃ C.6℃ D.﹣6℃
2.下列计算正确的是(  )
A. +=B.(﹣a22=﹣a4
C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)
3.已知x,y满足方程组,则x+y的值为(  )
A.9 B.7 C.5 D.3
4.为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是(  )
A.2和1 B.1.25和1 C.1和1 D.1和1.25
5.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为(  )
A.2B. C.6D.8
6.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是(  )
A.3 B.4 C.5 D.6
7.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是(  )
黑枸杞子的功效与作用
2022今日高考
8.9
9.5
9.5
孟桐8.9
s2
0.92
0.92
1.01
1.03
杨瑞代
A.甲 B.乙 C.丙 D.丁
8.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是(  )
A.x<﹣2或x>2 B.x<﹣2或0<x<2
C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2
 
二、填空题(本题共8小题,每小题3分,共24分)
9.分解因式:mn2﹣m=     
10.若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是     
11.实数a在数轴上的位置如图,则|a﹣3|=     
12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为     
13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于     
14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为     
15.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是     
16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为     
 
三、解答题(本题共6道题,每题6分,共36分)
17.解不等式组
18.化简求值:(,其中a=2+
19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)
(1)画出△ABC关于原点O成中心对称的△A1B1C1
(2)画出△A1B1C1关于y轴对称的△A2B2C2
20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.
长跑
短跑
跳绳
山姆士跳远
200
丈夫超威猛×
300
×
×
150
×
200
×
×
150
×
×
×
(1)估计学生同时喜欢短跑和跳绳的概率;
(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;
(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?
21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.
22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.