时钟问题解法与算法公式
时钟问题的关键点:
分针走一分钟(转6度)时,时针走0.5度,分针与时针的速度差为5.5度。
请看例题:
【例题1】从12时到13时,钟的时针与分针可成直角的机会有:
A.1次 B.2次 C.3次 D.4次
【解析】
时针与分针成直角,即时针与分针的角度差为90度或者为270度,理论上讲应为2次,还要验证:
根据角度差/速度差 =分钟数,可得 90/5.5= 16又4/11<60,表示经过16又4/11分钟,时针与分针第一次垂直;同理,270/5.5 = 49又1/11<60,表示经过49又1/11分钟,时针与分针第二次垂直。经验证,选B可以。
【例题2】在某时刻,某钟表时针在10点到11点之间,此时刻再过6分钟后的分针和此时刻3分钟前的时针正好方向相反且在一条直线上,则此时刻为
A.10点15分
B.10点19分
C.10点20分
D.10点25分
【解法1】
时针10—11点之间的刻度应和分针20—25分钟的刻度相对,所以要想时针与分针成一条直线,则分针必在这一范围,而选项中加上6分钟后在这一范围的只有10点15分,所以答
案为A。
【解法2】常规方法
设此时刻为X分钟。则6分钟后分针转的角度为6(X+6)度,则此时刻3分钟前的时针转的角度为0.5(X+3)度,以0点为起始来算此时时针的角度为2023年春节几月几号星期几0.5(X—3)+10×30度。所谓“时针与分针成一条直线”即0.5(X—3)+10×30—6(X+6)=180度,解得X=15分钟。
著名数学难题:时钟的时针和分针
由时钟的时针与分针的特殊关系,产生了许多有趣的数学问题,下面介绍几例,并研究它们的解法。
例1 在钟表正常走动的时候,有多少个时针和分针重合的位置?它们分别表示什么时刻?
解:钟表上把一个圆分成了60等分,假如时针从12点开始走过了x个刻度,那么分针就要走过12x个刻度,即分针走了12x分钟。两针在12点重合后,当分针比时针多走60个刻度时,
出现第一次分针和时针重合;当分针又比时针多走60个刻度时,出现第二次分针和时针重合;……直至回到12点两针又重合后,又开始重复出现以上情况。用数学式子来表示,即为:
12x-x=60m,其中m=1,2,….
度为1小时,对分针来说1个刻度就是1分钟。所以,12点以后出现第
出现第四、五、六、七、八、九、十次重合的时间不难算出,它们
如果用m=11代入,解得x=60,出现第十一次重合的时间是12点,这样就回到了开始的时刻,可见,以上共有11次出现两针重合的时间。
例2 已知:挂钟比标准时间每小时慢2分钟;台钟比挂钟每小时快2分钟,闹钟比台钟每小时慢2分钟,手表比闹钟每小时要快2分钟。试问:手表走时是否标准,若不标准时,判断是快还是慢,快多少或慢多少?为什么?
解:(1)标准时间走60分钟时,挂钟时间走58分。
(2)因为台钟比挂钟每小时快2分钟,所以挂钟走60分钟时,台钟走62分钟。设当标准时间走60分时,即挂钟走58分,台钟走x1分钟,则
(3)因为闹钟比台钟每小时慢2分钟,所以台钟走60分钟时,闹钟走58分钟。设当标准时间走60分,台钟走x1分时,闹钟走x2分,则
(4)因为手表比闹钟每小时快2分钟,所以闹钟走60分钟时,手表走62分钟。设当标准时间走60分时,闹钟走x2分,手表走x3分,则
答:手表走时不准,走慢了,每小时慢0.133分,即大约慢8秒。
例3 一个指在九点钟的时钟,分针追上时针需多少分钟?
解:设在钟盘面上时针转过x格后,它与分针重叠,这时分针转动了(45+x)分,由于分针转动的速度是时针的12倍,所以有方程
例4 时钟的分针和时针在24小时中,形成过多少次直角?
解:因为时针1小时转动30°,所以1分钟转动0.5°,分针每分钟转动6°.
设x分钟后,时针与分针成直角,则有方程
x(6°-0.5°)=90°.
针24小时会有多少次差90°的倍数呢?设有n次,则
由此解得n=88.
在这88次中,时针与分针所成角度分别为90°,180°,270°,360°,其中180°,360°不合要求,因此总共有44次直角。
(注:我们用两针重合的方法也可算出同样的结果。)
例5 时钟的分针和时针现在恰好重合,那么经过多少分钟后,可以成为一条直线?
蒋友柏的老婆 直线上。
也可这样解:
设经x分钟后两针在一直线上,这时分针转动了x分的刻度,而时
例6 在早上不到6点时,某人看了一下手表,发现分针与时针很接近,还差3分钟就重合了,问此时是什么时间?
解:设此时是5时x分,在手表面上,因为分针1分钟转动6°,时针1小时转动30°,则1分钟转动0.5°,时针从0点到5点x分转动了(150+0.5x)度,分针从0分到x分转动了6x度。因为此时分针还差3分钟与时针重合,即还差李耐阅照片3×6°=18°,所以有方程150+0.5x-6x=18.
解之,得x=24.
所以,此时为5时24分。
下面是关于时钟的一个更精彩的算题。
我们知道爱因斯坦是一位伟大的物理学家,他是相对论的奠基人,他的科学成就使人类跨越了一个时空。有一次爱因斯坦卧病在床,他的一位朋友来探望他,为解除他的烦闷,他的朋友出了一个问题让他思考。
设想钟表的位置在12点整,这时把长短针对调一下,它们的位置还是合理的。但是,在6点整时,如果把长短针对调,就成了一个笑话,因为这时短针正指在12,而长针正指在6,这种情况不可能发生。那么,钟表的长短针在什么位置,它们对调后能使得在新的位置上所指的仍是实际上可能的时间?
爱因斯坦悠然地对他朋友说,这个问题对病床上的人确是一个很好的消遣,只可惜它消磨不了我太多时间。说着他坐起身来,在纸上画了一个草图,然后写出了问题的解答,所花的时间比你们听这个故事的时间还短。
问题是怎样解决的呢?
第一类情况,当时针与分针重合时,它们可以对调。这种情况在例1雷军十周年演讲中已经解决,总共在钟面上有11个位置。
除此以外还有没有其他可能呢?
设时钟走了x个刻度,分针走了y个刻度,仿照例1有方程
当两针对调后,就变成时针走了y个刻度,分针走了x个刻度。如果设分针已在此之前走了n圈,又可得方程
把m,n看成已知数解这个方程组,得
由0≤x,y≤60,m,n为正整数,可知m,n只能取从0到11,总共有144组解。其中当m=0,n=0与m=11,n=11时,两针都是在12这个位置, 当m=n时,就是第一类情况中的11个重合的位置。当m≠n时,可求出其余的两针不重合时的另外的132个位置。
对一个卧病之人,爱因斯坦的思维仍这样敏捷,不禁使后人为这位巨匠的天赋而惊叹。
行测试题精选解答:时钟问题常见种类与解法
1、二点到三点钟之间,分针与时针什么时候重合?
分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。
解: (5×2)÷(1-)=10÷=10(分)
答:2点10分时,两针重合。
2、在4点钟至5点钟之间,分针和时针在什么时候在同一条直线上?
分析:分针与时针成一条直线时,两针之间相差30小格。在4点钟的时候,分针指向12,时针指向今年端午节是几月几日20224,分针在时针后5×4=20(小格)。因分针比时针速度快,要成直线,分针必须追上时针(20小格)并超过时针(30小格)后,才能成一条直线。因此,需追及(20+30)小格。
解: (5×4+30)÷(1-)=50÷=54(分)
答:在4点54分时,分针和时针在同一条直线上。
3、在一点到二点之间,分针什么时候与时针构成直角?
分析:分针与时针成直角,相差15小格(或在前或在后),一点时分针在时针后5×1=5小格,在成直角,分针必须追及并超过时针,才能构成直角。所以分针需追及(5×1+15)小格或追及(5×1+45)小格。
解: (5×1+15)÷(1-)=20÷=21(分)
或(5×1+45)÷(1-)=50÷=54(分)
答:在1点21分和1点54分时,两针都成直角。
4、星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。看完书之后,巧得很,时针与分针又恰好在同一条直线上。看书期间,小明听到挂钟一共敲过三下。(每整点,是几点敲几下;半点敲一下)请你算一算小明从几点开始看书?看到几点结束的?
分析:连半点敲声在内,一共敲了三下,说明小明看书的时间是在中午12点以后。12点以后时针与分针:
第一次成一条直线时刻是:(0+30)÷(1-)=30÷=32(分)
即12点32分。
第二次成一条直线时刻是:(5×1+30)÷(1-)=35÷=38(分)
即 1点38分。
第三次成一条直线的时刻是:(5×2+30)÷(1- )=40÷=43(分)
即 2点43分。
如果从12点32分开始,到1点38分,只敲2下,到2点43分,就共敲5下(不合题意)
如果从1点38分开始到2点43分,共敲3下。因此,小明应从1点38分开始看书,到2点43分时结束的。
5、一只挂钟,每小时慢5分钟,标准时间中午12点时,把钟与标准时间对准。现在是标准时间下午5点30分,问,再经过多长时间,该挂钟才能走到5点30分?
分析:1、这钟每小时慢5分钟,也就是当标准钟走60分时,这挂钟只能走60-5=55(分),即速度是标准钟速度的=
。
2、因每小时慢5分,标准钟从中午12点走到下午5点30分时,此挂钟共慢了5刘若英的电影×(17-12)=27(分),也就是此挂钟要差27分才到5点30分。
3、此挂钟走到5点30分,按标准时间还要走27分,因它的速度是标准时钟速度的,实际走完这27分所要时间应是27÷。
解: 5×(17-12) =27 (分) 27÷=30(分)
答:再经过30分钟,该挂钟才能走到5点30分。
解题关键:时钟问题属于行程问题中的追及问题。钟面上按“时”分为12大格,按“分”分为60小格。每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。
例1:从5时整开始,经过多长时间后,时针与分针第一次成了直线?
5时整时,分针指向正上方,时针指向右下方,此时两者之间间隔为25个小格(表面上每个数字之间为5个小格),如果要成直线,则分针要超过时针30个小格,所以在此时间段内,分针一共比时针多走了55个小格。由每分钟分针比时针都走11/12个小格可知,此段时间为55/(11/12)=60分钟,也就是经过60分钟时针与分针第一次成了直线。
发布评论