计算机科学与技术学习心得(2)
据说全中国最多只有三十个人懂图论。此言不虚。图论这东东,技巧性太强,几乎每个问题都有一个独特的方法,让人头痛。不过这也正是它魅力所在:只要你有创 造性,它就能给你成就感。我的导师说,图论里面随便揪一块东西就可以写篇论文。大家可以体会里面内容之深广了吧!国内的图论书中,王树禾老师的“图论及其 算法”非常成功。一方面,其内容在国内教材里算非常全面的。另一方面,其对算法的强调非常适合计算机系(本来就是科大计算机系教材)。有了这本书为主,再 参考几本翻译的,如Bondy & Murty的《图论及其应用》,人民邮电出版社翻译的《图论和电路网络》等等,就马马虎虎,对本科生足够了。再进一步,世界图书引进有GTM系列 的\"Modern Graph Theory\"。此书确实经典!国内好象还有一家出版了个翻译版。不过,学到这个层次,还是读原版好。搞定这本书,也标志着图论入了门。
离散数学方面我们北京工业大学实验学院有个世界级的专家,叫邵学才,复旦大学概率论毕业的,教过高等数学,线性代数,概率论,最后转向离散数学,出版著作 无数,论文集新加坡有一本,堪称经典,大家想学离散数学的真谛不妨来看看。这老师的课我专门去听过,
极为经典。不过你要从他的不经意的话中去挖掘精髓。 在同他的交谈当中我又深刻地发现一个问题,虽说邵先生写书无数,但依他自己的说法每本都差不多,我实在觉得诧异,他说主要是有大纲的限制,不便多写。这就 难怪了,很少听说国外写书还要依据个什么大纲(就算有,内容也宽泛的多),不敢越雷池半步,这样不是看谁的都一样了。外版的书好就好在这里,最新的科技成 果里面都有论述,别的先不说,至少是“紧跟时代的理论知识”。
组合感觉没有太适合的国产书。还是读Graham和Knuth等人合著的经典“具体数学”吧,西安电子科技大学出版社有翻译版。 抽象代数,国内经典为莫宗坚先生的“代数学”。此书是北大数学系教材,深得好评。然而对本科生来说,此书未免太深。可以先学习一些其它的教材,然后再回头 来看“代数学”。国际上的经典可就多了,GTM系列里就有一大堆。推荐一本谈不上经典,但却最简
单的,最容易学的:/~ec/book/这本“Introduction to Linear and Abstract Algebra\"非常通俗易懂,而且把抽象代数和线性代数结合起来,对初学者来说非常理想,我校比较牛的同学都有收藏。
李易峰王思聪同游
何晴近况数论方面,国内有经典而且以困难著称的”初等数论“(潘氏兄弟著,北大版)。再追溯一点,还有更加经典(可以算世界级)并且更加困难的”数论导引“(华罗 庚先生的名著,科学版,九章书店重印,繁体的看起来可能比较困难)。把基础的几章搞定一个大概,对本科生来讲足够了。但这只是初等数论。本科毕业后要学计 算数论,你必须看英文的书,如Bach的\"Introduction to Algorithmic Number Theory\"。
计算机科学理论的根本,在于算法。现在很多系里给本科生开设算法设计与分析,确实非常正确。环顾西方世界,大约没有一个三流以上计算机系不把算法作为必修 的。算法教材目前公认以Corman等著的\"Introduction to Algorithms\"为最优。对入门而言,这一本已经足够,不需要再参考其它书。
再说说形式语言与自动机。我看过北邮的教材,应该说写的还清楚。但是,有一点要强调:形式语言和自动机的作用主要在作为计算模型,而不是用来做编译。事实 上,编译前端已经是死领域,没有任何open problems,北科大的班晓娟博士也曾经说过,编译的技术已相当成熟。如果为了这个,我们完全没必要去学形式语言--用用yacc什么的就完了。北邮 的那本在国内还算比较好,但是在深度上,在跟可计算性的联系上都有较大的局限,
现代感也不足。所以建议有兴趣的同学去读英文书,不过国内似乎没引进这方面 的教材。可以去互动出版网上看一看。入门以后,把形式语言与自动机中定义的模型,和数理逻辑中用递归函数定义的模型比较一番,可以说非常有趣。现在才知 道,什么叫“宫室之美,百官之富”!
计算机科学和数学的关系有点奇怪。二三十年以前,计算机科学基本上还是数学的一个分支。而现在,计算机科学拥有广泛的研究领域和众多的研究人员,在很多方 面反过来推动数学发展,从某种意义上可以说是孩子长得比妈妈还高了。但不管怎么样,这个孩子身上始终流着母亲的血液。这血液是the mathematical underpinning of computer science(计算机科学的数学基础),也就是理论计算机科学。原来在东方大学城图书馆中曾经看过一本七十年代的译本(书皮都没了,可我就爱关注这种 书),大概就叫《计算机数学》。那本书若是放在当时来讲决是一本好书,但现在看来,涵盖的范围还算广,深度则差了许多,不过推荐大一的学生倒可以看一看, 至少可以使你的计算数学入入门。
最常和理论计算机科学放在一起的一个词是什么?答:离散数学。这两者的关系是如此密切,以至于它们在不少场合下成为同义词。(这一点在前面的那本书中也有 体现)传统上,
数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复变函数,实变函数,泛函数等等。实变和泛函被很多人认为是现代数 学的入门。在物理,化学,工程上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这些分支处理的数学对象与传统的分析有明显的区别:分析研究的问题解决方 案是连续的,因而微分,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计算。人们从而称这些分支为“离散数学”。“离散数 学”的名字越来越响亮,最后导致以分析为中心的传统数学分支被相对称为“连续数学”。
林书含离散数学经过几十年发展,基本上稳定下来。一般认为,离散数学包含以下学科:
1) 集合论,数理逻辑与元数学。这是整个数学的基础,也是计算机科学的基础。 德国大学排名
2) 图论,算法图论;组合数学,组合算法。计算机科学,尤其是理论计算机科学的核心是 校园言情小说阅读网
算法,而大量的算法建立在图和组合的基础上。
3) 抽象代数。代数是无所不在的,本来在数学中就非常重要。在计算机科学中,人们惊讶地发现代数竟然有如此之多的应用。
乡村爱情13演员表但是,理论计算机科学仅仅就是在数学的上面加上“离散”的帽子这么简单吗?一直到大约十几年前,终于有一位大师告诉我们:不是。D.E.Knuth(他有 多伟大,我想不用我废话了)在Stanford开设了一门全新的课程Concrete Mathematics。 Concrete这个词在这里有两层含义:
首先:对abstract而言。Knuth认为,传统数学研究的对象过于抽象,导致对具体的问题关心不够。他抱怨说,在研究中他需要的数学往往并不存在, 所以他只能自己去创造一些数学。为了直接面向应用的需要,他要提倡“具体”的数学。在这里我做一点简单的解释。例如在集合论中,数学家关心的都是最根本的 问题--公理系统的各种性质之类。而一些具体集合的性质,各种常见集合,关系,映射都是什么样的,数学家觉得并不重要。然而,在计算机科学中应用的,恰恰 就是这些具体的东西。Knuth能够首先看到这一点,不愧为当世计算机第一人。其次,Concrete是Continuous(连续)加上 discrete(离散)。不管连续数学还是离散数学,都是有用的数学!
理论与实际的结合——计算机科学研究的范畴
前面主要是从数学角度来看的。从计算机角度来看,理论计算机科学目前主要的研究领域包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式 计算理论,并行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。这些领域互相交叉,而且新的课题在不断提出,所以很难理出一个头绪来。 想搞搞这方面的工作,推荐看中国计算机学会的一系列书籍,至少代表了我国的权威。下面随便举一些例子。
由于应用需求的推动,密码学现在成为研究的热点。密码学建立在数论(尤其是计算数论),代数,信息论,概率论和随机过程的基础上,有时也用到图论和组合学等。很多人以为密码学就是加密解密,而加密就是用一个函数把数据打乱。这样的理解太浅显了。
发布评论