学校:郑州科技学院
院系:信息科学与工程系
专业:计算机科学与技术
年级:08
班级:08计科(2)班
学号:200815034
姓名:
指导老师:牛忠霞
               
           
格言——
   
                   
光纤通信技术发展应用及展望
摘要:光纤通信,就是利用光纤来传输携带信息的光波以达到通信之目的。光纤通信是现代化通信网络的基础平台。光导纤维的巨大潜力,将使信息高速公路不仅成为数据传输媒介,还将输送电视、电话、教育、金融等多种服务。随着光纤通信的飞速发展,光纤通信有向全光网发展的趋势火影之超级系统…….
关键字:光纤通信的发展和应用,光纤通信的原理,全光通信
一、本原理及优势
电通信是以电作为信息载体实现的通信,而光通信则是以光作为信息载体而实现的通信。所谓光纤通信,就是利用光纤来传输携带信息的光波以达到通信之目的。要使光波成为携带信息的载体,必须对之进行调制,在接收端再把信息从光波中检测出来。
光纤通信作为一门技术,其出现,发展的历史至今不过3040年,但它已经给世界通信的面貌带来了巨大的变化,全关通信作为未来光纤通信的展望——将把我们带入全新时代。
光纤通信技术是通过光学纤维传输信息的通信技术。在发信端,信息被转换和处理成便于传输的电信号,电信号控制光源,使发出的光信号具有所要传输的信号的特点,从而实现信号的电一光转换。发信端发出的光信号通过光纤传输出到远方的收信端,经光电二极管等转换成电信号,从而实现信号的光一电转换。各种电信号对光波进行调制后,通过光纤进行传输的通信方式,称光纤通信。
光纤通信不同于有线电通信,后者是利用金属媒体传输信号,光纤通信则是利用透明的光纤传输光波。虽然光和电都是电磁波,但频率范围相差很大。一般通信电缆最高 使用频率约9-24兆赫(10(6)Hz),光纤工作频率在10(14)-10(15))Hz之间。
光纤通信最主要的优点是:(1) 容量大。光纤工作频率比目前电缆使用的工作频率高出8-9个数量级,故所开发的容量很大。(2) 衰减小。光纤每公里衰减比目前容量最大的通信同轴电缆的每公里衰减要低一个数量级以上。(3) 体积小,重量轻。 同时有利于施工和运输。(4) 防干扰性能好。光纤不受强电干扰、电气化铁道干扰 和雷电干扰,抗电磁脉冲能力也很强,保密性好。(5) 节约有金属。一般通信电 缆要耗用大量的铜、铝或铅等有金属。光纤本身是非金属,光纤通信的发展将为国家 节约大量有金属。(6) 成本低。目前市场上各种电缆金属材料价格不断上涨,而 光纤价格却有所下降。这为光纤通信得到迅速发展创造了重要的前提条件。
  光纤通信首先应用于市内电话局之间的光纤中继线路,继而广泛地用于长途干线网上,成为宽带通信的基础。光纤通信尤其适用于国家之间大容量、远距离的通信,包括 国内沿海通信和国际间长距离海底光纤通信系统。目前,各国还在进一步研究、开发用于广大用户接入网上的光纤通信系统。 随着光纤放大器、光波分复用技术、光弧子通信技术、光电集成和光集成等许多新技术不断取得进展,光纤通信将会得到更快的发展。
全光化和光集成化的光纤通信技术正在研究之中。全光化指的是在中继器中光信号直接被
放大,省去了光2022国庆73周年—电转换和电光转换过程。全光化的光集成化功能大大减少中断器和光端机的体积,降低功耗和成本,提高可靠性。
二、通信技术的应用及发展
在信息高速公路上,铺作“路面”的,并不是交通高速公路使用的钢筋混凝土和沥青,而是以光学玻璃细丝为媒介,激光脉冲射束为数据载体的光导纤维。目前,世界各国掀起了铺设光纤信息高速公路的热潮,美国光缆总长度已达1303.5万千米,法国光缆总长度达104.6万千米,日本的光缆总长度也达54.7万千米。然而与这些国家信息高速公路的要求相比,现有光缆系统的传输能力远远不够,因此,各国增铺光缆线路的势头都很猛烈,法国计划在2000年把光缆线路增加到200万千米。可见,在名符其实的全国信息高速公路出现之前,这些光缆系统必须要增容,而所传输的信息则要数字化和加以标识,这样才能省电,并且精确地传输给电话通信系统和高速公路上的用户。
未来的信息高速公路将首先在现有光纤通道基础上,增设“大道”,先将光缆铺到公路旁、住宅前,最终目标是实现光纤进入千家万户。目前,光缆线路铺设的最大问题不在于干线,而在于入户,即连结每一户居民。如果要把全美国9600万个住户入户铜芯同轴电缆都
改成光缆,估计需要2000亿美元,要花费20年甚至更多的时间,这是信息高速公路最大的瓶颈之一。目前,信息高速公路尚在起步阶段。
光纤通信是现代化通信网络的基础平台。光导纤维的巨大潜力,将使信息高速公路不仅成为数据传输媒介,还将输送电视、电话、教育、金融等多种服务,成为继本世纪50年代开始美国大规模普及电话之后最重大的通信手段革命。展望国际光纤通信技术的发展,其趋势将是日益网络化,智能化,在信息时代,光纤网将日益发挥它的巨大作用,成为信息高速公路的强大的后盾。
光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段.
光纤通信的诞生和发展是电信史上的一次重要革命与卫星通信、移动通信并列为20世纪90年代的技术。进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离)光波传输系统和网络有了更为迫切的需求。
光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。
通信的发展过程是以不断提高载波频率来扩大通信容量的过程,光频作为载频已达通信载波的上限,因为光是一种频率极高的电磁波 ,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。
光纤通信的应用领域是很广泛的,主要用于市话中继线,光纤通信的优点在这里可以充分发挥,逐步取代电缆,得到广泛应用。还用于长途干线通信过去主要靠电缆、微波、卫星通信,现以逐步使用光纤通信并形成了占全球优势的比特传输方法;用于全球通信网、各国的公共电信网(如我国的国家一级干线、各省二级干线和县以下的支线);它还用于高质量彩的电视传输、工业生产现场监视和调度、交通监视控制指挥、城镇有线电视网、共用天线(CATV)系统,用于光纤局域网和其他如在飞机内、飞船内、舰艇内、矿井下、电力部门、军事及有腐蚀和有辐射等中使用。
光纤传输系统主要由:光发送机、光接收机、光缆传输线路、光中继器和各种无源光器件
构成。要实现通信,基带信号还必须经过电端机对信号进行处理后送到光纤传输系统完成通信过程。它适合于光纤模拟通信系统中,而且也适用于光纤数字通信系统和数据通信系统。在光纤模拟通信系统中,电信号处理是指对基带信号进行放大、预调制等处理,而电信号反处理则是发端处理的逆过程,即解调、放大等处理。在光纤数字通信系统中,电信号处理是指对基带信号进行放大、取样、量化,即脉冲编码调制(PCM )和线路码型编码处理等,而电信号反处理也是发端的逆过程。对数据光纤通信,电信号处理主要包括对信号进行放大,和数字通信系统不同的是它不需要码型变换。
三、光纤通信未来之展望——全光通信
随着光纤通信的飞速发展,光纤通信有向全光网发展的趋势。文中介绍了全光网的概念、优点及一些关键技术,展望了未来光通信的发展前景。全光网络光通信光交换在以光的复用技术为基础的现有通信网中,网络的各个节点要完成光/电/光的转换,仍以电信号处理信息的速度进行交换,而其中的电子件在适应高速、大容量的需求上,存在着诸如带宽限制、时钟偏移、严重串话、高功耗等缺点,由此产生了通信网中的『电子瓶颈』现象。为了解决这个问题,人们提出了全光网(AON)的概念,全光网以其良好的透明性、波长路由特性、兼容性和可扩展性,已成为下一代高速宽带网络的首选。
(一)全光通信理论
全光网的概念所谓全光网,是指从源节点到终端用户节点之间的数据传输与交换的整个过程均在光域内进行,即端到端的完全的光路,中间没有电信号的介入。全光网的结构示意如图1所示。图1全光网的结构示意图点击此处查看全部新闻图片邓伦和baby是真的吗2、全光网的优点基于波分复用的全光通信网可使通信网具备更强的可管理性、灵活性、透明性。
(二)全光通信优点
它具备如下以往通信网和现行光通信系统所不具备的优点:(1)省掉了大量电子器件。全光网中光信号的流动不再有光电转换的障碍,克服了途中由于电子器件处理信号速率难以提高的困难,省掉了大量电子器件,大大提高了传输速率。
  (2)提供多种协议的业务。全光网采用波分复用技术,以波长选择路由,可方便地提供多种协议的业务。
  (3)组网灵活性高。全光网组网极具灵活性,在任何节点可以抽出或加入某个波长。
  (4)可靠性高。由于沿途没有变换和存储,全光网中许多光器件都是无源的,因而可靠性高。
(三)全光网中的关键技术
1)光交换技术光交换技术可以分成光路交换技术和分组交换技术。光路交换又可分成3种类型,即空分(张瀚个人资料SD)、时分(TD)和波分/频分(WDFD)光交换,以及由这些交换形式组合而成的结合型。其中空分交换按光矩阵开关所使用的技术又分成两类,一是基于波导技术的波导空分,另一个是使用自由空间光传播技术的自由空分光交换。光分组交换中,异步传送模式是近年来广泛研究的一种方式。
2)光交叉连接(OXC)技术OXC是用于光纤网络节点的设备,通过对光信号进行交叉连接,能够灵活有效地管理光纤传输网络,是实现可靠的网络保护/恢复以及自动配线和监控的重要手段。OXC主要由光交叉连接矩阵、输入接口、输出接口、管理控制单元等模块组成。为增加OXC的可靠性,每个模块都具有主用和备用的冗余结构,OXC自动进行主备倒换。输入输出接口直接与光纤链路相连,分别对输入输出信号进行适配、放大。管理控制单元通过编程对光交叉连接矩阵、输入输出接口模块进行监测和控制、光交叉连接矩
阵是OXC的核心,它要求无阻塞、低延迟、宽带和高可靠,并且要具有单向、双向和广播形式的功能。OXC也有空分、时分和波分3种类型。
3)光分插复用在波分复用(WDM)光网络领域,人们的兴趣越来越集中到光分插复用器上。这些设备在光波长领域内具有传统SDH分插复用器(SDHADM)在时域内的功能。特别是OADM快手网红张开凤是男的女的可以从一个WDM光束中分出一个信道(分出功能),并且一般是以相同波长往光载波上插入新的信息(插入功能)。对于OADM,在分出口和插入口之间以及输入口和输出口之间必须有很高的隔离度,以最大限度地减少同波长干涉效应,否则将严重影响传输性能。已经提出了实现OADM的几种技术:WDMDE-MUXMUX的组合;光循环器或在Mach-Zehnder结构中的光纤光栅;用集成光学技术实现的串联Mach-Zehnder结构中的干涉滤波器。前两种方式使隔离度达到最高,但需要昂贵的设备如WDMMUXDEMUX或光循环器。Mach-Zehnder结构(用光纤光栅或光集成技术)还在开发之中,并需要进一步改进以达到所要求的隔离度。上面几种OADM都被设计成以固定的波长工作。
4)光放大技术光纤放大器是建立全光通信网的核心技术之一,也是密集波分复用(DWDM)系统发展的关键要素。DWDM系统的传统基础是掺饵光纤放大器(EDFA)。
光纤在1550nm窗口有一较宽的低损耗带宽,可以容纳DWDM的光信号同时在一根光纤上传输。采用这种放大器的多路传输系统可以扩展,经济合理。EDFA出现以后,迅速取代了电的信号再生放大器,大大简化了整个光传输网。但随着系统带宽需求的不断上升,EDFA也开始显示出它的局限性。由于可用的带宽只有30nm,同时又希望传输尽可能多的信道,故每个信道间的距离非常小,一般只有O.81.6nm,这很容易造成相邻信道间的串话。因此,实际上EDFA的带宽限制了DWDM系统的容量。最近研究表明,1590nm宽波段光纤放大器能够把DWDM系统的工作窗口扩展到1600nm以上。贝尔实验室和NH的研究化硅和饵的双波段光纤放大器。它由两个单独的子带放大器组成:传统1550nmEDFA1530nm1560nm);1590nm的扩展波段光纤放大器泡萝卜条EBFAEBFAEDFA的结合使用,可使DWDM系统的带宽增加一倍以上(75nm),为信道提供更大的空间,从而减少甚至消除了串话。因此,1590nmEBFA对满足不断增长的高容量光纤系统的需求迈出了重要的一步。