ubuntu安装配置eclipse+hadoop开发环境(⼗分详
细)+WordCount实例
我的环境:
系统平台:Ubuntu14.04TLS(64位)
Hadoop环境:Hadoop2.8.3
ubuntu安装教程Eclipse:Neon.2 Release(4.6.2)
Eclipse插件:hadoop-eclipse-plugin-2.8.3.jar
1.先确保已安装了jdk和hadoop,没有的可参考以下两篇⽂章,已经安装的跳过此步骤
ubuntu jdk安装教程
ubuntu搭建hadoop-2.8.3(伪分布式)
2.安装eclipse,下载对应的hadoop eclipse pulgin插件
注意:Hadoop插件要跟⾃⼰安装的Hadoop版本相对应
eclispe官⽹下载地址
eclipse官⽹下载
下载的是eclipse-installer⽂件,打开eclipse-inist,⼀般选择第⼀个(根据⾃⼰需求)
我的hadoop版本是hadoop2.8.3下载的是hadoop-eclipse-plugin-2.8.3.jar
3.在eclipse上安装Hadoop插件并重启eclipse
将插件hadoop-eclipse-plugin-2.8.3.jar放到Eclipse⽬录下的dropins⽂件夹中,并重启Eclipse。
4.在Eclipse中配置插件
在Eclipse软件中,单击【Windows】-【Preferences】,弹出Preferences对话框,若左侧出现【Hadoop Map/Reduce】选项,则表⽰插件放置成功。
单击【Hadoop Map/Reduce】选项,并在右侧设置Hadoop的安装⽬录。
【Windows】-【Open Perspective】-【Other】,弹出对话框,单击蓝⾊⼩象【Map/Reduce】,并确定
这时Eclipse下⽅输出窗⼝部分,出现【Map/Reduce Locations】选项卡,单击右上⾓的蓝⾊⼩象进⾏编辑
location name:名称随意填写
Host与l⽂件⾥的配置保持⼀致:
port第⼀个是9001,第⼆个是9000
点击Advanced parameters,到fs.defaultFS
添加fs.defaultFS路径,与l⽂件配置保持⼀致
到p.dir,修改路径,和l⽂件配置保持⼀致
配置完成之后,记得保存,点击finish
右键刷新hadoop,即可看到连接成功
5.创建hadoop项⽬,运⾏Wordcount实例
(1)创建hadoop项⽬,点击左上⾓file—>new—>other
(2)选择map/preduce下⾯的map/preduce project
(3)填写项⽬名称,点击finish
(4)导⼊jar包,新建⼀个⽂件夹hadoop_jar
将以下jar包直接复制粘贴到此⽂件夹内
hadoop-2.8.3/share/hadoop/mapreduce下的所有jar包(⼦⽂件夹下的jar包不⽤)hadoop-2.8.3/share/hadoop/common下的hadoop-common-2.8.3.jar
hadoop-2.8.3/share/hadoop/common/lib下的commons-cli-1.2.jar
注:若版本不同,注意jar包的不同
(5)在项⽬名称上右键点击Build Path,点击Configure Build Path
(6)点击Libraries,第⼆步点击Add JARS
(7)选中hadoop_jar下的所有jar包,点击ok
(8)点击Apply and Close,应⽤并退出
(9)Referenced Libraries库⾥就多了刚刚添加的⼏个jar包
(10)新建WordCount类,
WordCount实例api
package lib_test1;
import java.io.IOException;
import java.util.StringTokenizer;
import org.f.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new String());
while (itr.hasMoreTokens()) {
word.Token());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += ();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length < 2) {
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
}
}
(11)上传需要单词计数的⽂件⾄hdfs
file1⽂件内容:
file2的⽂件内容:
(12)右键运⾏WordCount实例,选择Run configurations
(13)双击java Application,选择WordCount,点击Arguments,第⼀个是输⼊路径,第⼆个是输出路径(输出⽂件qy_output是⾃动创建的,运⾏实例之前不能有,不然报错),输⼊输出路径中间以⼀个空格隔开,点击Apply,最后点击run
(14)运⾏过程
(15)运⾏结果