《大学文科数学》课程教学大纲
学 时 数:54—72
学 分 数:3—4
适用专业:纯文科类专业
执 笔:吴赣昌
编写日期:2007年6月
课程的性质、目的和任务
大学文科数学包含了大学数学的基本知识、基本技能,以及蕴涵于其中的基本数学思想方法和基本的哲学常识,是对高等学校公共事业、教育学、心理学、文学、法学、英语等纯文科类专业学生进行知识技术教育、文化素质教育与塑造世界观的一门重要基础课程,它是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。
通过本课程的学习,要使学生理解大学文科数学的基本概念,了解其知识框架结构,掌握必要的基本理论和基本知识、技能;培养学生的量化意识、量化能力、抽象思维能力、创造思维能力、必要的逻辑推理能力和几何直观空间想象能力;提高发现、提出、分析和解决人文社会科学实际问题的能力,从而为将来从事工作和进一步深造打下坚实的基础。
在传授数学知识的同时,适当地介绍典型数学史料,有机地渗透辨证唯物主义、历史唯物主义和爱国主义教育,融会基本的数学思想方法和数学文化内涵,调动学生学习大学文科数学的兴趣,为获得实事求是的精神、科学的态度和方法、良好的个性品质以及形成正确的世界观进行启迪性教育。
课程教学的主要内容与基本要求
第一部分 微积分
一、函数、极限与连续
主要内容:
绪言;实数与区间,函数的概念及其表示法,函数的有界性、单调性、周期性和奇偶性;反函数、复合函数和隐函数,基本初等函数与初等函数;极限的概念与性质,函数的左、右极限;极限的四则运算;两个重要极限;无穷小与无穷大,无穷小的比较;连续函数的概念,函数的间断点;初等函数的连续性,闭区间上连续函数的性质;阿基米德介绍。
基本要求:
1、理解函数的概念,掌握函数的表示法;了解函数的有界性、单调性、周期性和奇偶性;了解复合函数、反函数、隐函数和分段函数的概念;
2、知道基本初等函数的性质及其图形,理解初等函数的概念;
3、了解数列极限和函数极限(包括左、右极限)的概念;知道极限的四则运算法则,会用两个重要极限;
4、了解无穷小与无穷大的概念,了解无穷小比较方法,会利用无穷小等价求极限的方法;
5、了解函数的连续与间断的概念,了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质。
6、通过绪言与阿基米德介绍,了解数学的历史地位、作用以及古代数学家的创造与杰出贡献。
二、导数与微分
主要内容:
导数的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系;基本初等函数的导数,导数的四则运算,反函数的导数,复合函数的求导法则;隐函数的导数;高阶导数的概念;微分的概念,微分的四则运算,一阶微分形式的不变性,利用微分进行近似计算。一阶微分形式的不变性微分在近似计算中的应用。
基本要求:
1、理解导数与微分的概念,知道导数的几何意义,了解导数的物理意义,会用导数描述一些物理量,了解函数的可导性与连续性之间的关系;
2、掌握导数的四则运算法则,会求部分复合函数的求导法,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,了解微分在近似计算中的应用;
3、会求隐函数的一阶导数,了解高阶导数的概念;
4、会求隐函数和由参数方程所确定的函数的一阶、二阶导数,会求反函数的导数。
5、通过抽象导数概念的几何原型和物理原型,了解导数概念的产生与求导过程中蕴含的哲学思想。
三、中值定理与导数的应用
主要内容:
罗尔定理,拉格朗日中值定理,柯西中值定理;洛必达法则;函数的单调性及其判别法,函数的极值及其求法,函数最大值和最小值的求法及简单应用。
基本要求:
1、了解罗尔定理、拉格朗日中值定理与柯西中值定理;
2、会用洛必达法则求未定式极限的方法;
3、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用;
4、了解拉格朗日、费马等数学家对数学的贡献,了解数学的应用意义。
四、不定积分
主要内容:
原函数和不定积分的概念,不定积分的基本性质;掌握不定积分的基本积分公式,不定积分的换元积分法与分部积分法。
基本要求:
1、理解原函数的概念、理解不定积分的概念;
2、掌握不定积分的基本性质与基本积分公式;
3、会计算不定积分的凑微分法、换元积分法和分部积分法;
4、了解牛顿的生平事迹和他对数学发展所作的历史性贡献。
五、定积分及其应用
主要内容:
抽象定积分概念的两个现实原型,定积分的概念;定积分的性质;积分上限的函数及其导数,牛顿一莱布尼茨公式,求定积分过程中的辨证思维;定积分的换元积分法与分部积分法;无穷限的广义积分;定积分的微元法及其应用:求平面图形的面积、旋转体的体积、变力沿直线所作的功等。
基本要求:
1、理解定积分的概念与性质;
大学文科专业2、掌握微积分基本定理与牛顿-莱布尼茨公式;
3、能利用定积分的基本性质、换元积分法与分部积分法计算定积分;
4、了解广义积分的概念并会计算简单无穷限的广义积分;
5、会用定积分表达和计算一些几何量与物理量;
6、了解莱布尼茨的生平事迹和他对数学发展所作的历史性贡献。
六、微分方程简介
主要内容:
常微分方程的基本概念,微分方程的解、通解、初始条件和特解;变量可分离的方程;一阶线性微分方程;微分方程组简介;微分方程的简单应用。
基本要求:
1、了解微分方程及其解、通解、初始条件和特解的概念;
2、掌握变量可分离的方程及一阶线性方程的解法;
3、了解应用微分方程解决一些简单实际问题的思想方法;
4、了解笛卡尔的生平事迹和他对数学发展所作的历史性贡献。
第二部分 线性代数
七、行列式
主要内容:
二阶行列式与三阶行列式,n阶行列式的概念;行列式的性质;克莱姆法则。基本要求:
1、会计算二阶与三阶行列式;
2、理解n阶行列式的概念,会求简单的n阶行列式;
3、掌握行列式的性质,会用行列式的性质化简行列式的计算;
4、知道克莱姆法则,会用克莱姆法则解线性方程组。
发布评论