模式识别实验报告(二)
学院:
专业:
学号:
姓名:XXXX
教师:
1)1实验目的
通过实际编程操作,实现对课堂上所学习的BP神经网络、SVM支持向量机和决策树这三种方法的应用,加深理解,同时锻炼自己的动手实践能力。
2)2实验内容
本次实验提供的样本数据有149个,每个数据提取5个特征,即身高、体重、是否喜欢数学、是否喜欢文学及是否喜欢运动,分别将样本数据用于对BP神经网络分类器、SVM支持向量机和决策树训练,用测试数据测试分类器的效果,采用交叉验证的方式实现对于性能指标的评判。具体要求如下:
BP神经网络--自行编写代码完成后向传播算法,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算可以基于平台的软件包);
SVM支持向量机--采用平台提供的软件包进行分类器的设计以及测试,尝试不同的核函数设计分类器,采用交叉验证的方式实现对于性能指标的评判;
决策树--采用平台提供的软件包进行分类器的设计以及测试,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算基于平台的软件包)。
3)3实验平台
专业研究方向为图像处理,用的较多的编程语言为C++,因此此次程序编写用的平台是VisualStudio及opencv,其中的BP神经网络为自己独立编写, SVM支持向量机和决策树通
过调用Opencv3.0库中相应的库函数并进行相应的配置进行实现。将Excel中的119个数据作为样本数据,其余30个作为分类器性能的测试数据。
4)4实验过程与结果分析
4.1基于BP神经网络的分类器设计
未识别的网络 BP神经网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。其学习规则是使用梯度下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
在独自设计的BP神经中,激励函数采用sigmod函数,输入层节点个数为5,一个隐层并且节点数为5,输出节点数为1个,通过读取excel中相应的特征数据,进行训练,再用测试数据进行测试。如图4-1为所设计的BP类。
发布评论