13种常用的数据分析(潜在转化分析LTA的做法和解释)
之前给大家写了很多潜在类别分析的教程Mplus教程:如何做潜在类别分析LCA R数据分析:用R语言做潜类别分析LCA Mplus数据分析:潜在类别分析(LCA)流程(详细版) R数据分析:再写潜在类别分析LCA的做法与解释,今天继续给大家拓展一步。
今天要介绍的就是潜在转换分析,这个东西就是LCA的纵向版本。是一个专门用来研究质变的统计技巧。有一句话叫做量变起质变,你怎么知道质变到底发生没有?就用潜在转换分析。
潜在转换分析latent transition analysis (LTA)
潜在转换分析是潜在类别分析的纵向版,纵向研究设计的目的之一就是看变化,相应的,潜在转换分析就是用来看潜类别的变化的。
我们再来回忆一张图:
上图中我们知道根据潜变量是分类还是连续的,我们可以有潜在剖面分析和潜在类别分析,
现在把这两个东西都放在纵向数据中,相应地,我们就有潜增长模型Latent growth model,潜在转换分析Latent transition analysis
所以,大家记住:
我们要研究潜剖面(潜变量为连续变量)的变化,就用潜增长模型
我们要研究潜类别(潜变量为分类变量)的变化,就用潜在转换分析
那么,现在看一个潜在转换分析的定义了:
LTA is a longitudinal e某tension of latent class models and enables the investigator to model a dynamic, or changing, latent variables。
上面这个定义太宽泛,再来看个具体的:
这个就很具体了,所以大家记住潜在转换分析的3个特点:以人为中心,潜类别和纵向设计。
这个方法特别适合那种随着时间很可能会发生改变的人的特质,比如认知,随着时间的推移有的人就从高认知转换成低认知了,而另外一部分人可能从低认知转换为高认知....。所以研究这种动态变化的潜变量的质的改变一定记得潜在转换分析哦。
做潜在转换分析的时候我们都是从2个潜变量开始做的,因为你要转换嘛,所以起始类别一定是2,比如我现在想要研究儿童认知发展,我可以在每个时间点都用LCA将儿童划分为K(K≥2)个亚组,但是通过LTA我就可以得到是否随着时间变化儿童认知会在亚组间移动。
这么一来,问题就来了,你想知道儿童会不会随着时间从亚组A移动到亚组B,首先你得保证不同时间你测得东西是一样的吧,就是你在不同时间得到的亚组都是一样的,所以做潜在转换分析一定要保证亚组的稳定性。
大家好好理解下这个亚组稳定性:它不是说我时间1的时候一些人在亚组A,时间2的时候还是应该在亚组A,而是时间1的亚组A和时间2的亚组A都是同一个亚组A,亚组的特征不变!
上面的话一定要好好理解。
一个完整的LTA需要我们报告3个参数,其中两个和LCA一样,一个是变量响应概率另一个是亚组比例latent class prevalences and item-response probabilities。第三个参数便是转换概率transition probabilities,很好理解,就是时间1时候的亚组转换到时间2不同亚组的概率。
另外,LTA根据你是否有理论基础可以是验证性的,也可以是探索性,还可以加入协变量和远端结局变量,具体请往下看。
怎么做数据分析潜在转换分析五步法