文档通过自己论证属实。
第一步:录入或调入数据(图1)。
图1 原始数据(未经标准化)
第二步:打开“因子分析”对话框。
沿着主菜单的“Analyze→Data Reduction→Factor”的路径(图2)打开因子分析选项框(图3)。
图2 打开因子分析对话框的路径
图3 因子分析选项框
第三步:选项设置。
首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value”栏。下面逐项设置。
图4 将变量移到变量栏以后
设置Descriptives选项。
单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。
图5 描述选项框
在Statistics栏中选中Univariate descriptives复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。
在Correlation Matrix栏中,选中Coefficients复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant复选项,则会给出相关系数矩阵的行列式,如果希望
在Excel中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。
设置完成以后,单击Continue按钮完成设置(图5)。
设置Extraction选项。
在Analyze栏中,选中Correlation matirx复选项,则因子分析基于数据的相关系数矩阵进行分析;如果选中Covariance matrix复选项,则因子分析基于数据的协方差矩阵进行分析。对于主成分分析而言,由于数据标准化了,这两个结果没有分别,因此任选其一即可。
在Display栏中,选中Unrotated factor solution(非旋转因子解)复选项,则在分析结果中给出未经旋转的因子提取结果。对于主成分分析而言,这一项选择与否都一样;对于旋转因子分析,选择此项,可将旋转前后的结果同时给出,以便对比。
选中Scree Plot(“山麓”图),则在分析结果中给出特征根按大小分布的折线图(形如山麓截面,故得名),以便我们直观地判定因子的提取数量是否准确。
在Extract栏中,有两种方法可以决定提取主成分(因子)的数目。一是根据特征根(Eigenvalues)的数值,系统默认的是。我们知道,在主成分分析中,主成分得分的方差就是对应的特征根数值。如果默认,则所有方差大于等于1的主成分将被保留,其余舍弃。如果觉得最后选取的主成分数量不足,可以将值降低,例如取;如果认为最后的提取的主成分数量偏多,则可以提高值,例如取。主成分数目是否合适,要在进行一轮分析以后才能肯定。因此,特征根数值的设定,要在反复试验以后才能决定。一般而言,在初次分析时,最好降低特征根的临界值(如取) ,这样提取的主成分将会偏多,根据初次分析的结果,在第二轮分析过程中可以调整特征根的大小。
第二种方法是直接指定主成分的数目即因子数目,这要选中Number of factors复选项。主成分的数目选多少合适?开始我们并不十分清楚。因此,首次不妨将数值设大一些,但不能超过变量数目。本例有8个变量,因此,最大的主成分提取数目为8,不得超过此数。在我们第一轮分析中,采用系统默认的方法提取主成分。
图6 提取对话框
发布评论