这⼏天由于⽤到矩阵求导相关的知识,但是⾃⼰没有学过矩阵论(研究⽣选课的时候,导师没有让选),于是百度了下,觉得完整的相关资料不多,还好发现了下⾯的这篇博客,给我了很⼤的帮助!
仔细分析了下博客中的内容,其实矩阵求导也是挺好理解的(估计是我有较好的MATLAB使⽤基础吧),下⾯看帖吧,哈哈!!
矩阵求导 属于 矩阵计算,应该查 Matrix Calculus 的⽂献:
在⽹上看到有⼈贴了如下求导公式:
Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'
于是把以前学过的矩阵求导部分整理⼀下:
1. 矩阵Y对标量x求导:
相当于每个元素求导数后转置⼀下,注意M×N矩阵求导后变成N×M了
Y = [y(ij)]
--> dY/dx = [dy(ji)/dx]
2. 标量y对列向量X求导:
注意与上⾯不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量
y = f(x1,x2,..,xn) --> dy/dX
= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'
3. ⾏向量Y'对列向量X求导:
注意1×M向量对N×1向量求导后是N×M矩阵。
将Y的每⼀列对X求偏导,将各列构成⼀个矩阵。
重要结论:
dX'/dX =
I
d(AX)'/dX =
A'
4. 列向量Y对⾏向量X’求导:
转化为⾏向量Y’对列向量X的导数,然后转置。
注意M×1向量对1×N向量求导结果为M×N矩阵。
dY/dX' =
(dY'/dX)'
5. 向量积对列向量X求导运算法则:
注意与标量求导有点不同。
d(UV')/dX =
(dU/dX)V' + U(dV'/dX)
d(U'V)/dX =
(dU'/dX)V + (dV'/dX)U'
重要结论:
d(X'A)/dX =
(dX'/dX)A + (dA/dX)X' = IA + 0X' = A
d(AX)/dX' =
(d(X'A')/dX)' = (A')' = A
d(X'AX)/dX =
(dX'/dX)AX + (d(AX)'/dX)X = AX + A'X
6. 矩阵Y对列向量X求导:
将Y对X的每⼀个分量求偏导,构成⼀个超向量。注意该向量的每⼀个元素都是⼀个矩阵。
7. 矩阵积对列向量求导法则:
d(uV)/dX =
(du/dX)V + u(dV/dX)
d(UV)/dX =matlab求导
(dU/dX)V + U(dV/dX)
重要结论:
d(X'A)/dX =
(dX'/dX)A + X'(dA/dX) = IA + X'0 = A
8. 标量y对矩阵X的导数:
类似标量y对列向量X的导数,
把y对每个X的元素求偏导,不⽤转置。
dy/dX = [
Dy/Dx(ij) ]
重要结论:
y = U'XV
= ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV'
y = U'X'XU 则
dy/dX = 2XUU'
y =
(XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' + 0 = 2(XU-V)U'
9. 矩阵Y对矩阵X的导数:
将Y的每个元素对X求导,然后排在⼀起形成超级矩阵。
10.乘积的导数
d(f*g)/dx=(df'/dx)g+(dg/dx)f'
结论
d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x (注意:''是表⽰两次转置)
发布评论