开店创业|手把手教你纤维面料的性能
5859字18图,阅读大约需要12分钟
纤维的化学组成和结构形态不同,其性能也不同。纤维的性能涉及诸多方面,这些性能直接影响着服装面料的加工难易和服装面料的众多性能,如服装面料的外观、服装面料的手感、服装面料的舒适性能、服装面料的成衣加工性能以及服装面料的强度和保养照料性能等。其中影响服装面料外观性能的主要是纤维的细度、长度、形态结构和力学性能等;影响服装面料生理舒适性能的主要是纤维的吸湿性能、热学性能及电学性能等;影响服装面料耐久性能和保养照料性能的主要是纤维的力学性能、耐气候性能、耐化学品性能以及纤维的保养性能等。
(一)密度
纤维的密度是指单位体积纤维的重量,常用g/cm3或mg/mm3来表示。它决定于纤维本身的结构,如纤维长链分子的相对分子质量和结晶度等特征。纤维的密度影响服装面料的覆盖性。密度小的纤维具有较大的覆盖性,制成的服装轻便。合成纤维比其他纤维的密度小,尤其是丙纶,比水还轻。
各类常用纤维的密度
(二)纤维的力学性能
涤纶锦纶
纤维在拉伸、弯曲、扭转、摩擦力、压缩、剪切等各种外力的作用下,产生各种变形的性能称为纤维的力学性能。
在服装加工和使用中,纤维主要受到拉伸力的作用。纤维在拉伸力的作用下所表现出的性能,称为纤维的拉伸性能。主要表现为纤维的强度、伸长、变形的难易和变形的恢复等几个方面。
(1)纤维强度
纤维受拉伸而断裂所需的力称为强力。强度是指每特纤维能承受的最大拉伸力。
(2)断裂伸长率
纤维被拉伸到断裂时,所产生的伸长值称为断裂伸长,也称绝对伸长。绝对伸长与原来长度的百分比即为断裂伸长率。用断裂伸长率这一指标可表征纤维的延伸性。纤维的断裂伸长率
越大,纤维的延伸性越好。
(3)纤维的弹性模量
纤维的弹性模量,又称初始模量,指纤维在最初较小变形阶段,其应力与应变的比值。是一个表征纤维变形难易的指标。纤维的弹性模量越大,纤维越不容易发生变形,纤维也越硬。在其他条件都相同的情况下,用弹性模量大的纤维加工的服装面料手感比较硬、更挺括。
(4)纤维的弹性
纤维受到外力作用会产生变形。去除外力,纤维所产生的变形中有一部分会立即恢复,随着去除外力后时间的延续,又有部分变形继续恢复,但最终仍有部分变形不能恢复。去除外力后,立即恢复的这部分变形称为急弹性变形;去除外力后,逐步恢复的变形称为缓弹性变形;不能恢复的这部分变形称为塑性变形。在所有变形(急弹性变形、缓弹性变形和塑性变形的总和)中,可恢复部分(急弹性变形和缓弹性变形的和)所占的百分比,称为弹性恢复率。
弹性恢复率可以衡量纤维的变形恢复程度,衡量纤维的弹性好坏。弹性恢复率数值越大,纤
维的弹性越好,变形恢复能力越强;反之则差。用弹性好的纤维加工的面料抗皱性好,而且,在其他条件都相同的情况下,用弹性好的纤维加工的面料通常较为耐磨,也耐疲劳,服装制品也较为耐穿。
(5)纤维的疲劳
纤维在一个大小不变的拉伸外力作用下,变形随时间的延长而逐渐增加的现象称为蠕变。纤维因蠕变也会逐渐损伤,以致断裂,这种现象称为“疲劳”。即使是很小的拉伸力,如果长期或反复作用,纤维内部的大分子也会伸直,逐渐被抽拔、滑移,而最终解体。
勤换衣服,创造了不受力停顿的条件,而洗涤又加速了缓弹性变形的恢复,因此勤换勤洗衣服,衣服更耐穿。
(三)纤维的热学性能
材料在温度变化过程中表现出来的物理性能,如比热容、热传导、热稳定性等,称为热学性能,其与服装面料的加工和服用性能有密切关系。
(1)比热容
由于水的比热容约为一般纤维的2~3倍,纤维的比热容随吸湿的增加而相应增大,因此潮湿的服装由于比热容上升,在接触到热源时,温度升高的速度没有干燥的衣服快。
在冬季,当贴身穿着的服装面料比热容较大时,其瞬时冷感较强,容易造成刚穿上身时的冰凉感,令人不舒适。另外,在冬季,当人体从事大运动量活动而致身体大量出汗时,若贴身穿着的服装面料吸湿性好而导水性差,容易造成汗水滞留在服装面料中,使得服装面料的比热容显著增大,停止运动后,身体产热量下降,若不及时增加衣物,容易造成服装从身体表面吸走大量热量,使人体着凉、感冒。
(2)导热
热量从高温物体向低温物体传递的一种接触散热方式称为传导散热,简称导热。不同物体传导散热能力的大小与本身结构及性状有关。
静止空气的导热系数最小,是理想的热绝缘体,因此应使服装材料中尽可能富含静止空气是提高服装保暖性能的有效措施。水的导热系数最大,约为纤维的10倍左右,因此服装受潮湿润时会使纤维导热系数增大,导致服装保暖性能下降。
(3)热对纤维材料的影响
纤维在受热过程中内部结构和性质会发生相应的变化。温度升高会使分子运动加剧,纤维分子链之间的作用力减小,物理机械状态改变,纤维最终熔融或分解。在加热速率相同的情况下,纤维升温的速率与其比热容有关。比热容越小,升温越快。
大多数合成纤维,在热的作用下,会经过几个不同的物理机械状态(玻璃态、高弹态、黏流态),直到最后熔融。天然纤维素纤维和天然蛋白质纤维的熔点比分解点还要高,在高温作用下,不经过熔融就直接分解或炭化。
(4)合成纤维的热塑性与热定型
合成纤维或其织物加热到玻璃化温度以上时,纤维内部大分子间的作用力减小,纤维的变形能力将增大。这时,如果施加一定张力,强迫纤维变形,在冷却并解除外力作用后,合成纤维面料的形状就会在新的分子排列状态下稳定下来。使用中的温度只要不超过定型温度,纤维或织物的形状就不会有大的变化。合成纤维的这种性能称为热塑性。利用纤维的热塑性进行的这种加工处理,称为热定型。
服装熨烫就是热定型的一种形式。
影响热定型效果的主要因素是温度、时间和纤维材料含有的水分。热定型加工时,合成纤维或其织物在高温处理后若急速冷却,可形成较多的无定形区,使纤维或织物的手感较为柔软,富有弹性,得到良好的定型效果。如果高温处理后长时间缓慢冷却,除了纤维和织物的变形会消失外,还会引起纤维内部结构的显著结晶化,使织物弹性下降,手感变硬。
锦纶等吸水性较大的合成纤维,所含水分可能降低纤维的大分子间的结合力,加速分子间结合点的断开,有利于热定型效果,因此用蒸汽定型效果比干热定型的效果要好。