浮力与压强》复习
1、浮力
(1) 定义:浸在液体(或气体)中的物体受到液体(或气体)向上托起的力叫浮力。
(2) 方向:无论物体在哪种液体中受到的浮力方向总是竖直向上的。
(3) 产生原因:假设有一个正方体完全浸没在水里,如图1所示
则正方体的前后、左右、上下六个表面都要受到水的压
强和压力,由于左右两个侧面和前后两侧面对应部分在
水中的深度相同,由液体压强公式p=ρgh可知,受到
水的压强大小相等;由公式Fps可知。作用在左右、
前后侧面上的压力也大小相等,且方向相反,彼此平衡。
    但是上下两表面由于在水中的深度不同,受到水的            中国恐怖片大全1
压强也不等,上表面的深度小,压强小;下表面的深度
大,压强大;所以下表面受到的向上的压力F大于上表面受到的向下的压力F,水对物体向上的和向下的压力差就是水对物体的浮力,即FFF.
如果物体浸在其他液体中,所受浮力也是由于该液体对物体向上和向下的压力差产生的.     
(4)浸在液体中的物体,无论是全部浸没在液体里,还是只有一部分浸入液体里;无论是正
在上浮还是正在下沉,无论是静止在容器底部还是漂浮在液面,都要受到液体对物体的浮力作用.只有如图2所示的情况中,该长方体的下表面与容器底面
紧密贴合,不受到液体向上的压力,只受到液体向下的压力作用时,
才不受到液体的浮力作用,这是一种特殊情况.
(5).漂浮在液面的物体,其上表面不受到液体向下的压力.因此,它受
到的浮力就等于液体对物体向上的压力.                              2
2.用弹簧秤测浮力
  有一铁块要测量出它在水中所受的浮力,可把铁块用细线系好挂在弹簧秤上,记下此时弹簧秤的示数G,然后把铁块浸入水中,则弹簧秤的示数减少,再记下此时弹簧秤的示数G,那么弹簧秤减少的示数,即两次弹簧秤的示数差,就等于铁块浸入在水中时所受浮力的大小,即:FGG.
3.用阿基米德原理计算浮力
  (1).阿基米德原理的内容:浸入液体中的物体受到向上的浮力,浮力的大小等于物体排开的液体受到的重力.
  (2).阿基米德原理的数学表达式:
FGgv
  式中农业银行怎么贷款G即为被液体排开的液体的重,单位是牛;是物体所浸入的液体的密度,其单位必须用千克/3手不释卷的含义v表示被物体排开的液体的体积,单位必须用米3g9.8/千克(或取10/千克).
  (3).由阿基米德原理可知,浮力F的大小只跟液体的密度、物体排开液体的体积v有关,跟物体本身的形状、构成物体的材料的密度无关,此外和物体在液体中的情况,如物体浸没在液体中的深度、容器中液体体积的多少、物体在液体中是静止还是运动等,都无关.
  (4).阿基米德原理也适用于气体,这就是:浸没在气体里的物体受到的浮力大小,等于它排开的气体所受到的重力.即:FG排气=ρgv
4.物体漂浮在液面的条件
    如图3所示,物体漂浮在液面,则其竖直方向上受到
两个力的作用:竖直向下的重力G和竖直向上的浮力F,
于物体静止在液面,因此它所受的重力G和浮力F应是一
对平衡力,它们的大小相等.
  所以,物体漂浮在液面的条件是:                              3
        FG.
  因为  FgvGgv.    可得关系式:藕怎么种gv白百何出轨对象gv.
5.物体在液体中的浮沉条件
  如图4所示,浸没在液体中的物体,在竖直方向上受到
两个力的作用:竖直向下的重力G和竖直向上的浮力F浮。
  物体在液体中究竟是上浮、下沉还是悬浮,由物体所受的
重力 G和浮力F的大小关系来决定.
  FG不平衡时,物体的运动状态就要发生变化:当
FG,物体上浮,直到FG大小相等时静止在液面,              4
漂浮时为止;FG,物体下沉,直到静止在容器底部时为
.
  FG,物体所受的浮力和重力是一对平衡力,物体可悬浮在液体中的任意位置,保持静止或匀速直线运动状态.
6.利用物体和液体的密度关系判断物体的浮沉:
  由阿基米德原理可得:Fgv
  物体的重力大小为:Ggv.
  当物体浸没在液体中,vv.
  gvgv.
  整理后可得:
  同样方法可推得:
  时,则物体上浮;
  时,则物体下沉.
7.浮力的作用
(1) 轮船: 轮船是采用“空心”法而浮在水面的,它所受到的浮力等于船的总重.
轮船的排水量是指轮船满载时排开的水的质量,即:排水量=船自身的质量+满载时货物的质量.
(2) 潜水艇:靠改变自身的重而实现上浮、下沉或停留在水中.
(3) 飞球和飞艇:利用空气的浮力升入高空.
(4) 密度计:是利用物体漂浮在液面的条件工作的,即FG.
密度计上标的刻度是被测液体的密度与水的密度之比,且大的刻度值在下面,小的刻度值在上面.
三、典型例题
例1 完全浸没在水中的乒乓球,放手后从运动到静止的过程中,其浮力大小变化情况是( ).
  A.浮力不断变大,但小于重力.
  B.浮力不变,但浮力大于重力.
  C.浮力先大于重力,后小于重力.
  D.浮力先不变,后变小,且始终大于重力直至静止时,浮力才等于重力.
  分析 乒乓球完全浸没在水中时,浮力大于重力.因浮力大小与物体在液内深度无关.因此乒乓球在水中运动时所受浮力不变,直到当球露出水面时,浮力开始变小.当浮力等于重力时;球静止在水面上,呈漂浮状态.
  答案 此题应选D
2 如图所示,一边长为15厘米的正方体木块漂浮在水面上,其上表面距离水面5 厘米,g10/千克,求(1)木块上、下表面受到液体的压力差;(2)木块所受到的浮力大小及方向
    分析 解答该题时,要综合应用液体的压强、压力及浮力产生原因
  的知识。                                                       
      漂浮在水面的物体,其上表在水面以上,不受水对它的向下压     
  强和压力,即:向下0F向下0
电脑主机启动不了根据液体的压强公式 p gh可求出浮体的下表面所受液体的压强,再由公式FPS,可求出下表面所受液体向上的压力.
  因为木块是漂浮,所以上、下表面所受液体的压力差:
FF向上F向下F向上PSghs
1.0×103千克/3×10/千克×(155)×102米×15×15×1042
22.5
    木块所受到浮力就等于木块所受水的压力差
      FF22.5
    :木块上、下表面所受液体的压力差是22.5牛;木块所受浮力也等于22.5牛,方向竖直向上.
  3 如图所示,在盛水容器中,有4个体积完全相同的物体:A是一浮于水面的正方体木块;B是用线吊着浸没在水中的长方体铁块;C是悬浮在水中的空心钢球;D是圆台形石蜡块,它沉于容器底面并与容器底无缝隙紧密结合,试比较分析ABCD所受浮力的情况.
   分析  虽然ABCD四个物体,它们的形状不同,组成的物体种类不同,有的是实心的、有的是空心的,浸入水中的深度也不同,但这些不同条件跟浮力的大小均无关,所以无需加以考虑.浮力的大小只跟液体的密度与排开液体的体积有关.因为它们是浸在同一种液体中,所以浮力的大小由 而定,但D物体与容器底紧密结合,故浮力为零.由此可知,此题ABCD四个物体所受浮力大小可以用下式来表示,即
  4 弹簧秤下挂一物体,在空气中弹簧秤的示数是392牛,浸没在水中时,弹簧秤的示数是342牛,求:(1)该物体的体积是多少?(2)构成该物体的材料密度是多少?
    分析 由题意可知,该题应该用公式法求出该物体的体积和密度
先由物体在空气中和在水中的弹簧秤示数差求出其所受的浮力大小;再将阿基米德原理的公式Fgv变形为v,可求出物体浸没时的v ,也就等于物体的体积,这是最为关键的一步,最后由密度公式,即可求出组成该物体的材料密度.
  物体浸没在水中时所受的浮力:
F GG392牛-342牛=50
    物体排开水的体积:
V5×1033
物体的体积: VV5×1033
    物体的密度: 7.84 ×103千克/3
    (1)物体的体积是5×10-33
      (2)构成该物体的材料密度是7.84 ×103千克/3
    体积相等的甲、乙两物体,其密度分别是0.8×103千克/31.2×103千克/3,
同时投入水中,静止后所受浮力之比为____________;如果甲、乙两物体的质量相等,则在水中静止后所受浮力之比为__________.
    分析:该题应首先分析判断密度不同的甲、乙两物体在水中静止所处的不同状态,然后根据不同的状态下的不同特点,运用合适的公式求解.
甲的密度0.8 ×103千克/3,小于水的密度,故甲投入水中后上浮直到静止后漂浮在水面,由浮体性质可知,甲所受的浮力与甲的重力相等,FG.
乙的密度1.2×103千克/3,大于水的密度,故乙投入水中后下沉直至静止在容器底部,运用阿基米德原理可求出其所受的浮力:
Fgv
    甲所受浮力:FGgV
乙所受浮力:FgVgV
而甲、乙的体积相等:VV,∴甲、乙所受浮力之比为:
如果甲、乙两物体不是体积相等而是质量相等,则根据同样的分析方法可解得:
甲所受浮力:FGmg
乙所受浮力:FgVg
而甲、乙质量相等,即mm,所以甲、乙所受浮力之比:
即:应填4:5 ; 6:5.
 6 如图,现有一正方体的物体悬浮于密度为 的液体中,其边长为L,上表面距液面的深度为h,那么下表面距液面的深度即为 .请根据浮力产生的原因推导阿基米德原理.
  分析  由于对称关系,物块受到来自前后左右的压力应为平衡力,但上下表面所受的压力不同,