4变质岩石学史
变质岩石学从岩石学中划分出来始
于1862年冯科塔(Voncotta B.),但直至19世纪末尼科尔(Nico)发明偏光显
微镜之后,才使变质岩岩石学成为独立的学科。
二十世纪初,非均匀系统的相平衡规
则--吉布斯相律,引入变质岩的研究。1911年戈尔得施密特V.M在研究奥斯陆地区辉长岩的接触变质晕圈时,提出了吉布斯相律的地质学表现形式,即戈尔施密特矿物相律,开创了以物理化学基本原理研究变质岩之先河。1920年,艾斯科拉(Eskola,p.)提出了变质岩矿物共生分
析的ACF简介,后经温克勒(Winkler,1976年),汤普逊(Thompon,1957年)的改进和发展,变质岩的矿物共生分析逐渐完善。
另外,在二十世纪二十年代初,瑞士
岩石学家格鲁宾曼(Grubemmaim U.),将荷兰物理学家施赖纳玛克斯(Schreinemkers F.A.)在研究多项系统平衡时,应用的拓扑学计算、零变平衡、单变平衡和双变平衡等一系列几何表示方法,引入变质岩岩石学;四十年代后,前苏联地质学家科尔任斯基(Kophcuhckuu B.C)又成功的将其应用在开放系统平衡研究上,这一系列建立在物理化学原理基础的矿物相平衡研究,使变质岩岩理学和变质岩成因的理论,提高到一个新的高度,并指导了变质岩的实验模拟研究,构成二十世纪初至中后期变质岩学的一大方向。
同一时期,变质岩岩石学的另一大方向,即将岩石学和地质环境的关联研究也
得到了迅猛的发展。早在1893年,英国人巴罗研究苏格兰高地部分地区的变质
岩时,发现泥质岩石变质时随着温度的升高,有相应的标志矿物出现,提出了指示矿物带的概念-巴罗式变质带。到1920年,艾斯科拉正是提出了变质相学说,完成了这个方向上的突破。1961年,日本人都城秋穗将变质岩相学说应用于区域变
质作用的研究,并发展为变质相系的概念,划分区域变质作用的三大压力类型,即高压,中压,低压变质相系,以对应于三种地质增温环境下的地热增温率。100多年来,变质岩岩石学的发展,
以偏光显微镜应用,吉布斯相律的引入模拟试验,以及新的测年技术的应用为基础,经历了描述岩石学,成因岩石学和地质历史岩石学的整个过程。
变质作用(metamorphism)这一词是Boue(1820)第一个使用。但变质作用的定义是Lyell(1833)比较系统地提出的。变质作用是指与地壳形成和发展密切相关的一种地质作用,是在地壳形成和演化地过程中,由于地球内力的变化,使已存在的地壳岩石在基本保持固态的条件下,原岩的总体化学保持不变,形成新矿物组合和结构构造。
变质作用和沉积作用、岩浆作用之间存在一定的区别和联系。变质作用与岩浆作用之间比较容易区别,它们之间的界线是熔融,而和沉积成岩作用之间的重要标志是矿物组合的变
化,一般认为以浊沸石开始出现为标志。
温度
温度是控制和影响变质作用的重要因素之一。多数变质作用是随温度升高而进行的。温度升高可使原来岩石中的一些矿物重结晶,更重要的是会使各种原始组分重新组合成新矿物。
首先要确定变质作用发生的温度范围,既起始温度和终止温度。按研究者目前的共同认识,变质作用不包括风化作用和沉积岩的成岩作用。而是以浊沸石、蓝闪石、硬柱石、钠云母、叶腊石等变质矿物的首次出现,作为变质作用的开始。这些矿物出现时的温度范围为是在150℃—250℃之间。这就是变质作用发生的起始温度。而由于变质作用不包括原岩的大规模的熔融,终止温度就是原岩发生大规模熔融时的温度,现确定为为650℃—100℃之间。其次是关于温度变化的原因,导致温度变化的地质因素和热源具有多样性。主要有下列几种因素:
地热增温:岩石随埋葬深度的增加,而温度逐渐增高,但其幅度一般不大,按地区的地质环境有所不同,从每千米十几度到一百多度,然而其空间范围较大。地质工作者称此种变化为地热增温率或地温梯度。
放射性元素衰释放的热量:其特点是总量大,不均匀,有时也极可观。
岩浆活动带来的热能:其强度和岩浆活动的规模有关,有时范围很小,仅限接触带,即是所谓的接触变质,有时也可能影响一个区域。
应力作用下的摩擦热:其较为局部,如断裂带。
12
压力
变质作用均在一定的压力环境下进行,所以压力是控制变质作用的重要物理因素。按压力的性质可分为二大类:
静压力:是指岩石在地壳内一定深度时,所承受的重力,其大小随埋藏深度的增加而增加,上覆岩层厚度的增加而增加,增加的速率是25-30×10Pa/KM。不同类型变质作用的压力变化很大,一般接触变质和动力变化发生在地表3-5km范围内,故压力不超过0.1GPa。区域变质作用的压力范围为0.1GPa-0.8GPa。
应力:当物体遭受定向外力作用,其内部就会产生一种抵抗力,称为应力。应力通常和地壳活动带的构造运动有关。应力是引起岩石变质和变形的重要因素。地壳中岩石变形、板状流劈理和碎裂构造都和应力有关,而且它能增加变质反应和重结晶的速度,促使变质作用的进行。
介质条件
在变质作用过程中,虽然岩石保持完整的固态,但其中仍有少量流体相。流体相存在于矿物粒隙之间或岩石的裂隙中,成分以水和CO2,还可含有其它挥发份。它们在较高的温度和压力条件下,具有较大的活性。
126
由于许多变质矿物可以在不同温度、压力条件下,由不同变质反应形成,因而由标志矿物划定的等变线往往不是等变质条件的。因此温克勒提出,根据常见岩石中,反映矿物共生组合重要变质变化的特定矿物反应来划分变质带,成为变质级。温克勒讲整个变质作用区间分为四个变质级:
很低级变质:其低限以基性岩中浊沸石开始出现为标志,其温度界限在200℃左右,它与低级变质之间的界限是基性岩中绿纤石或葡萄石和绿泥石的反应形成黝帘石和阳起石,临界温度在350℃左右或稍高;
低级变质:温度范围在350-550℃左右,和中级变质的界限是泥质岩石中十字石的出现或黑云母存在时,堇青石的形成;
变质岩
中级变质:温度在550-650℃左右,和高级变质的界限是白云母和石英反应形成矽线石+钾长石的组合;
高级变质:温度>650℃时,属于高级变质,上限可达800℃左右。
变质相的概念是由P.爱斯科拉最先提出。所谓变质相,是指反映多种原岩成分,在一定的p,T条件下,与变质矿物组合之间的对应关系。P.爱斯科拉认为“在特定的温度和压力条件下,经过变质作用,并达到化学平衡,其所形成的任一种变质岩的矿物成分,仅受化学成分控制”。即一个变质相包括了在一定物化条件下形成的,代表多种原岩化学成分的变质矿物组合。
P.爱斯科拉最初划分了八个变质相,随着对变质作用的深入研究与发展。在此基础上共划分了十一个变质相,每个变质相都有一定的温度、压力范围,大致可见示意图。
对变质作用的类型进一步划分,自变质岩作为一门独立学科的出现就提出许多分类,下面简要介绍常见的变质作用类型:
区域变质作用(regional metamorphism):最先是由法国学者A.Daubree于1859年提出,
是指大面积的岩石,因为温度增高和压力的作用等多种因素下,发生了程度不等的重结晶和变形的一类变质作用。区域变质作用形成的岩石普遍具有结晶片理及其他方向性组构。接触变质作用(contact metamorphism):是指在岩浆作用影响下,围岩主要受岩浆体温度的影响而产生的一种局部性变质作用。通常规模不大,围岩主要受岩浆散发的热量及挥发份的作用。当围岩仅受岩浆体温度影响而发生重结晶作用、变质结晶作用,变质前后化学成分基本相同,这类变质作用称为热接触变质作用。当围岩除受岩浆体温度影响外,由于挥发组分的影响,岩体和围岩发生交代作用,致使接触带附近的岩体和围岩的化学成分也发生变化,称为接触交代变质作用。
动力变质作用(dynamo metamorphism):是一种由于构造作用过程中所产生的强应力作用下,岩石发生破碎、变形,在破碎、变形的同时,伴有一定重结晶作用。其发育常受断裂构造控制,原岩的变化主要以脆性变形和塑性变形为主。
气液变质作用(Pneumatolytic hydrothermal metamorphism):是由于热的气体及溶液作用于已形成的岩石,使已有的岩石产生矿物成分、化学成分及结构构造的变化,称为气液变质作用。气液变质作用通常沿构造破碎带及矿脉边缘发育。
发布评论