2020年四川省乐山市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求
1.﹣2的相反数是( )
A.﹣2 B.2 C. D.﹣
解:﹣2的相反数是2.
故选B.
2.如图是由长方体和圆柱组成的几何体,它的俯视图是( )
A. B. C. D.
解:从上边看外面是正方形,里面是没有圆心的圆.
故选A.
3.方程组==x+y﹣4的解是( )
A. B. C. D.
解:由题可得:,消去x,可得
2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得
x=3,∴方程组的解为.
故选D.
4.如图,DE∥怎么查中考成绩2020FG∥BC,若DB=4FB,则EG与GC的关系是( )
A.EG=4GC B.EG=3GC C.EG=GC D.EG=2GC
解:∵DE∥FG∥BC,DB=4FB,∴.
故选B.
5.下列调查中,适宜采用普查方式的是( )
A.调查全国中学生心理健康现状
B.调查一片试验田里五种大麦的穗长情况
C.要查冷饮市场上冰淇淋的质量情况
D.调查你所在班级的每一个同学所穿鞋子的尺码情况
解:A.了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;
B.了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;
C.了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;
D.调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;
故选D.
6.估计+1的值,应在( )
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
解:∵≈2.236,∴ +1≈3.236.
故选C.
7.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,
以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”
如图所示,请根据所学知识计算:圆形木材的直径AC是( )
A.13寸 B.20寸 C.26寸 D.28寸
解:设⊙O的半径为r.
在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸.
故选C.
8.已知实数a、b满足a+b=2,ab=,则a﹣b=( )
A.1 B.﹣ C.±1 D.±
解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1.
故选C.
A. B.6 C.3 D.12
解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.
双曲线C3,的解析式为y=﹣
过点P作PB⊥y轴于点B
∵PA=PB
∴B为OA中点,∴S△PAB=S△POB
由反比例函数比例系数k的性质,S△POB=3
∴△POA的面积是6
故选B.
10.二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是( )
A.a=3±2 B.﹣1≤a<2
C.a=3或﹣≤a<2 D.a=3﹣2或﹣1≤a<﹣
解:由题意可知:方程x2+(a﹣2)x+3=x在1≤x≤2上只有一个解,即x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,当△=0时,即(a﹣3)2﹣12=0
a=3±2
当a=3+2时,此时x=﹣,不满足题意,当a=3﹣2时,此时x=,满足题意,当△>0时,令y=x2+(a﹣3)x+3,令x=1,y=a+1,令x=2,y=2a+1
(a+1)(2a+1)≤0
解得:﹣1≤a≤,当a=﹣1时,此时x=1或3,满足题意;
当a=﹣时,此时x=2或x=,不满足题意.
综上所述:a=3﹣2或﹣1≤a<.
故选D.
二、填空题:本大题共6小题,每小题3分,共18分
11.计算:|﹣3|= .
解:|﹣3|=3.
故答案为:3.
12.化简+的结果是
解: +
=﹣
=
=﹣1.
故答案为:﹣1.
13.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为 .
解:设点C所表示的数为x.
∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.
故答案为:﹣6.
14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是 度.
解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;
△ACE中,AC=AE,则:
∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;
∴∠BCE=∠ACE﹣∠ACB=22.5°.
故答案为:22.5.
15.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为 .
解:过O′作O′M⊥OA于M,则∠O′MA=90°,
∵点O′的坐标是(1,),∴O′M=,OM=1.
∵AO=2,∴AM=2﹣1=1,∴tan∠O′AM==,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°.
∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC=S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′=﹣=.
发布评论