高中数学-统计与概率
【知识图解】
【方法点拨】
准确理解公式和区分各种不同的概念
正确使用概率的加法公式与乘法公式、随机变量的数学期望与方差的计算公式.注意事件的独立性与互斥性是两个不同的概念,古典概型与几何概型都是等可能事件,对立事件一定是互斥事件,反之却未必成立.
第5课 古典概型
【考点导读】
1.在具体情境中,了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.
2.正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等.
【基础练习】
1. 某射手在同一条件下进行射击,结果如下表所示:
射击次数n | 10 | 20 | 50 | 100 | 200 | 500 |
击中靶心次数m | 8 | 19 | 44 | 92 | 178 | 455 |
击中靶心的频率 | ||||||
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是什么?
分析:事件A出现的频数nA与试验次数n的比值即为事件A的频率,当事件A发生的频率fn(A)稳定在某个常数上时,这个常数即为事件A的概率.
解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.
(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89.
点评 概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之.
2.将一枚硬币向上抛掷10次,其中正面向上恰有5次是 随机 事件 (必然、随机、不可能)
3.下列说法正确的是 ③ .
①任一事件的概率总在(0.1)内 ②不可能事件的概率不一定为0
③必然事件的概率一定为1 ④以上均不对
4.一枚硬币连掷3次,只有一次出现正面的概率是
5. 从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为
【范例解析】
例1. 连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.
(1)写出这个试验的基本事件;
(2)求这个试验的基本事件的总数;
(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?
解:(1)这个试验的基本事件Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};
(2)基本事件的总数是8.
(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).
点评 一次试验中所有可能的结果都是随机事件,这类随机事件称为基本事件.
例2. 抛掷两颗骰子,求:
(1)点数之和出现7点的概率;
(2)出现两个4点的概率.
解:作图,从下图中容易看出基本事件空间与点集S={(x,y)|x∈N,y∈N,1≤x≤6,1≤y≤6}中的元
素一一对应.因为S中点的总数是6×6=36(个),所以基本事件总数n=36.
(1)记“点数之和出现7点”的事件为A,从图中可看到事件A包含的基本事件数共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P(A)=.
(2)记“出现两个4点”的事件为B,则从图中可看到事件B包含的基本事件数只有1个:(4,4).所以P(B)=.
点评 在古典概型下求P(A),关键要出A所包含的基本事件个数然后套用公式
变题 .在一次口试中,考生要从5道题中随机抽取3道进行回答,答对其中2道题为优秀,答对其中1道题为及格,某考生能答对5道题中的2道题,试求:
(1)他获得优秀的概率为多少;
(2)他获得及格及及格以上的概率为多少;
点拨:这是一道古典概率问题,须用枚举法列出基本事件数.
n号房时间
解:设这5道题的题号分别为1,2,3,4,5,则从这5道题中任取3道回答,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),
(2,4,5),(3,4,5)共10个基本事件.
(1)记“获得优秀”为事件A,则随机事件A中包含的基本事件个数为3,故.
(2)记“获得及格及及格以上”为事件B,则随机事件B中包含的基本事件个数为9,故.
点评:使用枚举法要注意排列的方法,做到不漏不重.
例3. 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两
次,求取出的两件产品中恰有一件次品的概率.
解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2).其中小括号内左边的字母表示第1次取出的产品,
右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则
A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)] 事件A由4个基本事件组成,因而,P(A)==
【反馈演练】
1.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为 0.9 中10环的概率约为 0.2 .
分析:中靶的频数为9,试验次数为10,所以中靶的频率为=0.9,所以中靶的概率约为0.9.
解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2.
2.一栋楼房有4个单元,甲乙两人被分配住进该楼,则他们同住一单元的概率是 0.25 .
3. 在第1,3,6,8,16路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第6
路或第16路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的
概率等于
发布评论