第58卷 第1期 土  壤  学  报 Vol. 58,No. 1
2021年1月
ACTA PEDOLOGICA SINICA  Jan.,2021
* 国家自然科学基金项目(31800590)、现代农业产业技术体系建设专项资金(CARS-19)和江苏高校优势学科建设工程资助项目资助Supported by the National Natural Science Foundation of China (No. 31800590),the Special Fund for the Construction of Modern Agricultural Industry Technology System (No.CARS-19),and the Priority Academic Program Development of Jiangsu Higher Education Institutions † 通讯作者Corresponding author ,E-mail :作者简介:程思远(1993—),男,江西上饶人,硕士研究生,主要从事茶树栽培与育种研究。E-mail :收稿日期:2019–11–04;收到修改稿日期:2020–03–14;网络首发日期(wwwki ):2020–04–14
DOI :10.11766/trxb201911040281
程思远,李欢,梅慧玲,王炫清,刘馨秋,陈暄,马青平,黎星辉. 接种蚯蚓与添加有机物料对茶园土壤结构的影响[J]. 土壤学报,2021,58(1):259–268.
CHENG Siyuan ,LI Huan ,MEI Huiling ,WANG Xuanqing ,LIU Xinqiu ,CHEN Xuan ,MA Qingpin
g ,LI Xinghui. Effects of Earthworms and Organic Materials on Soil Structure in Tea Plantation[J]. Acta Pedologica Sinica ,2021,58(1):259–268.
接种蚯蚓与添加有机物料对茶园土壤结构的影响*
程思远1,李  欢2,梅慧玲3,王炫清3,刘馨秋1,陈  暄1,马青平1,
黎星辉1†
(1. 南京农业大学茶叶科学研究所,南京 210095;2. 江苏省农业科学院休闲农业研究所,南京 210095;3. 南京农业大学国家有机类肥料工程技术研究中心,南京 210095)
摘  要:蚯蚓通过取食、排泄、分泌黏液、挖掘洞穴等活动,可显著改善土壤结构,提高土壤肥力。为探究蚯蚓与有机物料不同配施方式对茶园土壤肥力的调控效果与机理,设计5个处理组:不施肥(CK ),不施肥+蚯蚓(BE ),菜籽饼+蚯蚓(CE ),茶树修剪物+蚯蚓(JE ),生物质炭+蚯蚓(TE ),分别进行室内模拟实验。结果显示,与不施肥(CK )相比,接种蚯蚓(BE )处理使土壤的总碳含量呈升高趋势;添加有机物料(CE 、JE 、TE )三个处理的土壤的全碳、全氮含量、有机质含量均高于BE 组,其中TE 处理最高。单独接种蚯蚓处理可提高土壤总有机质含量,接种蚯蚓配施有机物料对提高土壤肥力有明显作用,其中茶生物质炭与蚯蚓共同作用效果最好。经过3个月的培养,5个处理中土壤
pH 均呈降低趋势,其中BE 组pH 降低最大(6.81到5.82)。在采用同步辐射红外显微成像技术(SR-FTIR )对土壤微团聚体中矿物-有机复合体进行表征后,结果显示土壤团聚体中多糖、蛋白质、脂肪和黏土矿物均呈高度异质性分布,CE 和JE 组中黏土矿物与大分子有机物具有较高的分散性;黏土矿物与多糖的分布模式较为相似,而黏土矿物与蛋白质类物质、脂肪的分布模式有较大差异,且这种分布模式不受蚯蚓与有机物料互作的影响。各处理土壤团聚体的黏土矿物和有机官能团的相关性决定系数R 2由小到大均依次为:黏土矿物-蛋白质、黏土矿物-多糖、黏土矿物-脂肪,表明黏土矿物与大分子有机物的亲和性有差异,且不受蚯蚓与有机物料互作的影响。
关键词:蚯蚓;有机物料;矿物-有机复合体;同步辐射红外显微成像 中图分类号:S158.5    文献标志码:A
Effects of Earthworms and Organic Materials on Soil Structure in Tea Plantation
CHENG Siyuan 1, LI Huan 2, MEI Huiling 3, WANG Xuanqing 3, LIU Xinqiu 1, CHEN Xuan 1, MA Qingping 1, LI Xinghui 1†
260 土 壤 学 报 58卷
(1. Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China; 2. Institute of Leisur
e Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, China; 3. National Agricultural Fertilizer Engineering Technology Research Center, Nanjing Agricultural University, Nanjing 210095, China)
Abstract: 【Objective】Earthworms in the soil may help improve soil structure and fertility significantly through activities, like feeding, excreting, mucus secreting, excavating, etc. To explore the effects of earthworms as affected by application of organic materials of different kinds on the soil of a tea plantation, a pot experiment, designed to have five treatments, i.e. (i) no fertilizer input (CK), (ii) earthworms only (BE), (iii) rapeseed cake plus earthworms (CE), (iv) tea tree pruning plus earthworms (JE), and (v) biochar plus earthworms (TE), was conducted with tea trees planted in each of the pots (30 cm in diameter and 35 cm in height).【Method】Three months after the start of the experiment, soil samples were collected from each of the pots for analysis, after being air dried. Soil pH was measured using a pH meter; concentrations of soil organic carbon (SOC) and total nitrogen (TN) were quantified with a CN analyzer (Vario EL, Elementar GmbH); mineral-organic complex in soil microaggregates were characterized with the synchrotron radiation infrared micro-imaging method; intact particles (100-500 mm), varying in shape, were screened out with a 2-mm-sieve, frozen at -20 °C, and then prepared with a cryomicrotome (Cyrotome E, Thermo Shandon Limited, UK) into thin sect
ions (2 μm in thickness), which were eventually transferred into infrared-reflecting MirrIR Low-E microscope Slides (Kevley Technologies, Ohio, USA). Then distribution of SOCs of various forms and clay minerals (OH) was determined with the aid of Synchrotron radiation-based Fourier-transform infrared spectromicroscopy. 【Result】Results show that Treatment BE was higher than CK in content of soil total carbon in, but lower than in Treatment CE, JE and TE in content of total carbon, total nitrogen and organic matter; and Treatment TE group was the highest. Earthworm inoculation alone (Treatment CE) increased total carbon and organic matter content in the soil, and addition of organic materials (Treatment JE and TE) enhanced the effect, and addition of tea biochar (Treatment TE) had the best effect. All the treatments showed a decreasing trend in soil pH, and the trend was especially significant in Treatment BE (from 6.81 to 5.82). Furthermore, the synchrotron radiation microzone infrared spectra demonstrated that polysaccharides, proteins, fats and clay minerals in soil aggregates were highly heterogeneous. Clay minerals and macromolecular organics in Treatment CE and JE were highly dispersed. Minerals and polysaccharides were quite similar while clay minerals, protein and fat were quite different in distribution, and their distributions were had nothing to do with any interactions between earthworms and organic materials. Correlation analysis between clay minerals and organic functional groups shows that the correlation coefficients of clay minerals and organic functional groups in the five fractions of soil aggregates followed an increasing trends: clay minerals - protein < clay mine
rals - polysaccharide < clay minerals-fat, which indicates that clay minerals varied in affinity with macromolecular organics and their relationships were not affected by any interactions between earthworms and organic materials. 【Conclusion】In summary, soil organic amendments initialize a positive feedback loop by increasing SOC, which promotes interactions between minerals and organic components in the soil, and thereby may possibly serve as a soil management tool for enhancing carbon storage in the soil.
Key words: Earthworm; Organic materials; Mineral-organic complex; Synchrotron radiation infrared micro-imaging
茶树(Camellia sinensis(L.)O. Kuntze)是重要的农业经济作物,我国茶叶产量和种植面积均为世界第一[1]。有“生态系统工程师”之名的蚯蚓,其作为大型土壤动物,能通过破碎、取食、消化、分泌、排泄(蚯蚓粪)、掘穴等一系列生命活动改善土壤理化性质、促进有机质积累、调节土壤中碳氮磷循环、促进物质循环和能量代谢,利用肠道内的活性酶降解土壤有机物[2-4]。蚯蚓活动促进黏砂粒黏结为团聚体,显著促进土壤微团聚体的形成,将土壤中有机残体与矿物混合,增加团聚体有机碳含量,对提高土壤肥力有重要作用[5]。然而,目前对蚯蚓风化土壤矿物和矿物固持有机碳的机理还不清楚。土壤团聚体的物理保护和矿物的化学保护是影响土壤有机碳稳定的重要因素,但目前通常是将土壤团聚体和矿物-有机复合体隔离开来研究。
同步辐射红外显微成像技术(SR-FTIR)具有快速、直接、精准且光谱宽(10~10 000 cm–1)、亮度高、发散度小以及具备时间结构等优良特性,可
1期程思远等:接种蚯蚓与添加有机物料对茶园土壤结构的影响 261
原位检测土壤团聚体中矿物和有机官能团,分析微米级局域样品[6-8],能够从生物样品红外光谱中识别振动的分子成分[9]。本文采用SR-FTIR显微光谱技术研究土壤团聚体中矿物-有机复合体的红外成像规律和官能团特征,相比于传统的红外光谱技术,使用SR-FTIR技术可以使衍射限制在几毫米,它具有超声高分辨率,能提供一个准确的信号,为试验结果提供了更高的精准度[10]。
不同有机物料的添加可提升土壤有机质含量。菜籽饼富含高蛋白和氨基酸;茶树修剪物富含多种矿质营养及特殊的生化物质;生物质炭含有60%以上的碳,具有较强的热稳定性和抗分解性[11],是较好的土壤改良剂。近年来,将农林废弃物(如秸秆和果树枝条)制成生物质炭还田被认为是土壤增肥的重要途径[12]。我国每年茶树修剪物数量可观,本研究充分利用茶树修剪物等资源,将茶树修剪物制成的生物质炭,对比茶园常用有机肥菜籽饼肥进行试验,意图探索茶树修剪物对土壤培肥的意义。为探究蚯蚓与不同有机物料互作对土壤结构的影响,本文结合蚯蚓活动和不同有机物料展开培养实验,通过测定土壤理化性质和同步辐射红外光谱(SR-FTIR),原位表征土壤团聚体成像特征和有机碳的存在形式,揭示蚯蚓与有机物料对茶园土壤结构的影响,为茶园土壤管理提供一些科学依据。
1  材料与方法
1.1  供试材料
供试土壤:盆栽土壤取自江苏省南京市玄武区中山陵茶园(118◦50' E,32◦03' N),2018年茶园年平均气温为15.3 ℃,该茶园为温带季风气候,年均降雨量1 106.5 mm。根据茶园的地形与种植面积情况采用S散点法确定5个取样点,采集茶树行间0~20 cm表层土壤,将各个采样点的土壤混匀,摊开剔除杂物后,自然风干,过2 mm筛待用。
茶树修剪物:茶树修剪物采集于南京雅润茶叶有限公司高淳茶叶基地,将茶园修剪枝条按照粗细大小长短顺序整理后及时摊开晒干,碾磨过20目筛子待用。
生物质炭:将茶树修剪物晒干剪碎(<5 cm),装入1 m3的反应炉设备中,密封后,由外部的电加热器将内部的茶树修剪物以每分钟升温8.5 ℃至400 ℃左右,保持8~10 h,至反应炉的通风管中没有明显的浓烟排出为止[13]。
蚯蚓和菜籽饼:蚯蚓和菜籽饼购自于江苏省句容市王军蚯蚓专业养殖有限公司,蚯蚓品种为威廉环毛蚓(Pheretima guillelmi),属上食下居型蚯蚓[14]。在实验开始前利用滤纸法排空蚯蚓肠道,清肠方法:将干净的滤纸放置在烧杯的底部,再向烧杯里加少许蒸馏水,以刚好浸没滤纸,然后将蚯蚓放置于滤纸
上后用保鲜膜将烧杯封口,并用注射器针头将上方的保鲜膜扎孔,然后将烧杯放入温度为20 ℃,湿度为80%~85%的恒温箱中黑暗中清肠24 h。
供试土壤和有机物料基本理化性质见表1。1.2试验方法
于2018年5月18日采集中山陵茶园土壤模拟盆栽培养试验,设置5个处理,分别为:1)不施肥处理(CK);2)不施肥+蚯蚓(BE);3)15 g菜籽饼(盆栽土重量的0.5%)+蚯蚓(CE);4)60 g茶树修剪物(盆栽土重量的2%)+蚯蚓(JE);5)60 g 生物质炭(盆栽土重量的2%)+蚯蚓(TE)。每个处理重复5次,每盆装培养土3 kg。原始蚯蚓经过
表1供试土壤和有机物料基本理化性质
Table 1Basic physical and chemical properties of the soil and organic material tested
原料Material pH
全碳
Total C/(g·kg–1)
全氮
Total N/(g·kg–1)
碳氮比
C/N ratio
土壤Soil  5.569.80  1.45  6.76茶树修剪物Tea tree trimmings  5.4920.25  1.2616.07生物质炭Biochar    5.7720.27  1.2316.48菜籽饼Rapeseed cake  5.3180.52  4.8816.50
262 土    壤    学    报 58卷
清肠处理后每1 kg 土壤接种蚯蚓10 g ±0.02 g (2条)。选取一年生长势基本一致的无性系健壮茶苗 “龙井长叶”用于试验,每盆栽植6株,并根据茶苗的生长环境温度、湿度和观察茶苗长势不定期用去离子水浇灌茶苗,使试验土壤含水率保持在田间持水量的85%左右。
1.3  测定项目与方法
试验培养3个月时采集土壤样品进行分析测试,6个月时采集一次土壤样品测定pH 。土壤基本理化性质采用常规方法[15]测定。pH 利用ORION 3 STAR (Thermo 公司,美国)pH 计测定(土壤/水为1/2.5的质量体积比);全碳、全氮采用vario MACRO cube 系列元素分析仪(Elementar 公司,德国)测定。有机质采用重铬酸钾容量法测定,有机质(OM )含
量依据“OM 含量=TC 含量×1.724”进行换算[16-17]。同步辐射红外显微光谱技术(SR-FTIR )与样品处理:采用国家蛋白质科学研究设施中的BL01B 红外线站设备进行同步辐射光源(Synchrotron Radiation Facility ,SSRF )显微成像检测土壤微团聚体[18]。选取培养了3个月的土壤颗粒为研究对象,用水包埋土壤样品,并保持其完整性,在全封闭式快速冷冻切片机(徕卡,型号CM1950,德国)内进行–20 ℃低温切片,厚度约为2 µm 。切好的样品平铺放置在低辐射的Low-E 镜片上,干燥后在国家上海蛋白质科学研究设施五线六站BL01B 线站红外显微成像仪进行观察(图1)。面扫设置参数:光谱范围650~4 000 cm –1;光阑孔径20 µm ×20 µm ;步长10 µm ×10 µm ;光谱分辨率4 cm –1;扫描次数64次。
图1  同步辐射红外显微成像技术研究土壤微团聚体的流程
Fig. 1  Stepwise imaging process of the synchrotron radiation infrared microscopy for studying soil microaggregates
1.4  数据处理
数据处理及分析采用Excel 2010、SPSS19.0完成。
2  结 果
2.1  土壤酸碱度(pH )
培养3个月和6个月时,土壤pH 均值如图2所示,CK 处理分别为6.57、6.44,BE 处理分别为6.59、5.97,CE 处理分别为6.15、5.75,JE 处理分别为6.43、6.16,TE 处理分别为6.69、6.34,5个处理组中第3月pH 均值均高于第6月,表明即使在蚯蚓活动下,添加不同有机物料处理的土壤pH 均呈下降趋势;但添加茶树修剪物和生物质炭处理有缓解土壤酸化效果,但无显著性差异。
2.2  土壤全碳、全氮及碳氮比
从各处理(CK 、BE 、CE 、JE 、TE )中选取3次重复测定土壤基本养分状况,如表2所示。相较
注:1)CK ,对照;BE ,不施肥+蚯蚓;CE ,施菜籽饼+蚯蚓;JE ,施茶树修剪物+蚯蚓;TE ,施生物质炭+蚯蚓。下同。2)无相同字母表示同一采样时间处理间差异显著(P  < 0.05)。Note :1)CK ,control ;BE ,earthworms only ;CE ,rapeseed cake plus earthworms ;JE ,tea tree pruning plus earthworms ;TE ,biochar plus earthworms. The same below. 2)Different letters indicate significant differences between treatments at 0.05 level.
图2  不同施肥处理与接种蚯蚓下土壤pH 状况
Fig. 2  Soil pH in the pot relative to fertilization treatment
1期程思远等:接种蚯蚓与添加有机物料对茶园土壤结构的影响 263
于CK处理,BE处理的土壤全碳、有机质含量有升高趋势,表明蚯蚓活动可提高土壤肥力;与BE处理相比,蚯蚓配施有机物料的 CE、JE、TE处理均提高了土壤全碳、全氮和有机质含量,TE处理提高效果最明显,说明生物质炭与蚯蚓配施对土壤肥力提升效果最好。
表2  不同施肥处理与接种蚯蚓下盆栽土壤基本养分状况Table 2Basic nutrient status of the soil in the pot relative to treatment
处理Treatment
全碳
Total carbon/(g·kg–1)
全氮
Total nitrogen/(g·kg–1)
有机质
Organic matter/(g·kg–1)
碳氮比
C / N ratio
CK 9.80±0.58a 1.45±0.07a 16.70±1.26a
6.76±0.31ab
BE 10.02±1.12a    1.41±0.06a 17.27±1.95a 7.11±0.58b CE 11.29±0.27ab 2.02±0.07c 19.46±0.47ab
5.59±0.32a
红蚯蚓养殖技术JE 13.23±0.78b    1.83±0.04b 22.81±1.36b 7.23±0.45b TE 18.61±0.39c    1.56±0.03a 32.08±0.68c 11.93±0.54c 注:同一列中无相同字母表示处理间差异显著(P < 0.05)。Note:Different letters in the same column indicate significant differences
between treatments at 0.05 level.
2.3土壤团聚体的显微成像规律
本试验各处理中土壤团聚体的同步辐射红外显微成像如图3所示,土壤中官能团的指定如下:黏土矿物(Clay-OH,3 620 cm–1),脂肪(-C-H,2 920 cm–1),蛋白质(-NH,1 650 cm–1),多糖(-OH,1 080 cm–1)[19]。从同步辐射红外显微成像图可以看出多糖、蛋白质、脂肪和黏土矿物均呈高度异质性分布,且黏土矿物与多糖的分布规律较为相似,蛋白质与脂肪的分布规律相似,而黏土矿物与蛋白质和脂肪的分布规律有较大的差异;其中CK、BE 和TE组中的多糖、蛋白质、脂肪和黏土矿物的分布形状为团状,而CE和JE组中的黏土矿物与大分子有机物具有较高的分散性。
图3  不同施肥处理与接种蚯蚓下盆栽土壤团聚体的同步辐射红外显微成像图
Fig. 3 Synchrotron radiation microscopic imaging of microaggregates of the soil in the pot relative to treatment