指数函数求导公式是什么怎么推导
做数学是一个仔细的过程,更需要理解加刷题训练,下面是由编辑为大家整理的“指数函数求导公式是什么 怎么推导”,仅供参考,欢迎大家阅读本文。
指数函数求导公式是什么 怎么推导
指数函数求导指数函数求导公式:
(a^x)'=(lna)(a^x)
证明:
设:指数函数为:y=a^x
y'=lim【△x→0】[a^(x+△x)-a^x]/△x
y'=lim【△x→0】{(a^x)[(a^(△x)]-a^x}/△x
y'=lim【△x→0】(a^x){[(a^(△x)]-1}/△x
y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x…………(1)
设:[(a^(△x)]-1=M
则:△x=log【a】(M+1)
因此,有:
{[(a^(△x)]-1}/△x
=M/log【a】(M+1)
=1/log【a】[(M+1)^(1/M)]
当△x→0时,有M→0
故:
lim【△x→0】{[(a^(△x)]-1}/△x
=lim【M→0】1/log【a】[(M+1)^(1/M)]
=1/log【a】e
=lna
代入(1),有:
y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x
y'=(a^x)lna
证毕。
拓展阅读:学好数学的技巧
1.先看笔记后做作业
课后做题之前记得复习,所谓的复习就是再看一遍课本,复习一遍笔记。只有这样才能心中有数,不然做题基本都是稀里糊涂,浪费了时间,成绩也得不到提升。在课后作业中,尽量把课本吃透,不要盲目的去做课外题,不然会导致最后悬空,无法落地,考试成绩必然一塌糊涂!
2.做题之后加强反思
平时的学习,毕竟没有高考压力那么大,所以,在平时的演练中,一定要学会一个好的学习方法和解题思路。要善于总结,毕竟刚上高一,还是需要知识和方法的积累,如果坚持做下去,在高三的时候成绩必然会突飞猛进,考上一所好大学还是不成问题的。
3.复习和总结
学习方式已经和以前不一样了,以前被动学习比较多,老师都给你做好了,你只要等着记忆就可以了,但是高中却是主动学习的时期,所以,不管老师怎么讲,下去自己都要复习,总结自己的学习方法,这才是学习的最高境界。
4.勇于改错
每个人都会犯错,但是犯错能够改错也是勇敢的,是难能可贵的,可怕的就是一些人总是犯错,而且是犯同样的错误,这样的就不能原谅了。
5.错题重现
数学错题也是经常有的,不管是单元测试,还是月末考试,只要是出现数学错题,就记得去整理,因为所有的错误都整理起来,就可以集中解决了,而且在期末的时候可以拿出来多复习几次,尤其是高考的时候,这些数学错题就是宝贝。
发布评论