2018年市初中毕业统一学业考试
数学试卷
考生注意: 1.本试卷共25题.
2.试卷满分150分,考试时间100分钟.
3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题(本大题共6题,每题4分,满分24分) 1.
的结果是()
A. 4
B.3
C.
2.下列对一元二次方程230x x +-=根的情况的判断,正确的是() A.有两个不相等的实数根              B.有两个相等的实数根 C.有且只一个实数根                  D.没有实数根
3.下列对二次函数2
y x x =-的图像的描述,正确的是()
A.开口向下
B.对称轴是y 轴
C.经过原点
D.在对称轴右侧部分是下降的
4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是()
A.25和30
B.25和29
C.28和30
D.28和29
5.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是() A.A B ∠=∠      B. A C ∠=∠        C. AC BD =        D. AB BC ⊥
6.如图1,已知30POQ ∠=︒,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的
A
与直线OP 相切,半径长为3的
B 与A 相交,那么OB 的取值围是()
A. 59OB <<
B. 49OB <<
C. 37OB <<
D. 2
二、填空题(本大题共12题,每题4分,满分48分) 7. -8的立方根是. 8. 计算:2
2
(1)a a +-=.
9.方程组20
2
x y x y -=⎧⎨+=⎩的解是.
10.某商品原价为a 元,如果按原价的八折销售,那么售价是元(用含字母a 的代数式表示). 11.已知反比例函数1
k y x
-=(k 是常数,1k ≠)的图像有一支在第二象限,那么k 的取值围是.
12.某学校学生自主建立了一个学习用品义卖平 台,已知九年级200名学生义卖所得金额分布 直方图如图2所示,那么20-30元这个小组 的组频率是. 13.
2,,7
π
中考时间2018具体时间选出的这个数是无理数的概率为.
14.如果一次函数3y kx =+(k 是常数,0k ≠)的图像经过点(1,0),那么y 的值随着x 的增大而(填“增大”或“减小”)
15.如图3,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点
F ,设DA =a ,DC =b ,那么向量DF 用向量a b 、
表示为. 16.通过画出多边形的对角线,可以把多边形角和问题转化为三角形角和问题,如果从某个多
边形的一个顶点出发的对角线共有2条,那么该多边形的角和是度.
17.如图4,已知正方形DEFG 的顶点D 、E 在ABC ∆的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,ABC ∆的面积是6,那么这个正方形的边长是.
18.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形部或边上,且该图形与矩形每条边都至少有一个公共点(如图5),那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高, 如图6,菱形ABCD 的边长为1,边AB 水平放置,如果该菱形的高是宽的
2
3
,那么它的宽的值是. 三、解答题(共7题,满分78分)
19.解不等式组:21512
x x x x +>⎧⎪
⎨+-≥⎪⎩,并把解集在数轴上表示出来
.
20.先化简,再求值:2
221211a a a a a a
+⎛⎫-÷
⎪-+-⎝⎭
,其中a =. y
金额(元)
图2
图4 图3 图5 图
6
21.如图7,已知ABC ∆中,AB =BC =5,3tan 4
ABC ∠=. (1)求AC 的长;
(2)设边BC 的垂直平分线与边AB 的交点为D ,求
AD
BD
的值.
22.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图像如图8所示.
(1)求y 关于x 的函数关系式(不需要写定义域); (2)已知当油箱中剩余油量为8升时,该汽车会开始提示加油,在此行驶过程中,行驶了500千米时,司机发现离前方最近的加油站还有30千米路程,在开往加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
C B A
图7
23.已知:如图9,正方形ABCD 中,P 是边BC 上一点,BE AP ⊥,DF AP ⊥.垂足分别是点E 、F.
(1)求证:EF =AE -BE ; (2)联结BF ,若AF DF
BF AD
=
,求证:EF =EP .
24.在平面直角坐标系xOy 中(如图10),已知抛物线解析式2
12
y x bx c =-
++经过点A (-1,0)和点5(0,)2
B ,顶点为点C. 点D 在其对称轴上且位于点
C 下方,将线段DC 绕点
D 顺时针方向旋转90︒,点C 落在抛物线上的点P 处. (1)求抛物线的表达式; (2)求线段CD 的长度;
(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.
10
图9
P
F
E
D
C
B
A
25. 已知O 的直径AB =2,弦AC 与弦BD 交于点E ,且OD AC ⊥,垂足为点F. (1)如图11,如果AC =BD ,求弦AC 的长;
(2)如图12,如果E 为弦BD 的中点,求ABD ∠的余切值;
(3)联结BC 、CD 、DA ,如果BC 是O 的接正n 边形的一边,CD 是O 的接正(n+4)边形的
一边,求ACD ∆的面积.
图12
图11 备用图
O F E D C B A O
F
E
D
C B A