多边形经典例题 七年级
第三讲 多边形【知识点拨】1、三角形定义:在同一平面内,由不在同一条直线上的三条线段首尾顺次相接组成的图形。2、四边形定义:在同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形。3、多边形的定义:定义1:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接所组成的(封闭)图形。多边形多边形按组成它的线段条数分成三角形、四边形、五边形…其中三角形是最简单的多边形。定义2:如果一个多边形...
第三讲 多边形【知识点拨】1、三角形定义:在同一平面内,由不在同一条直线上的三条线段首尾顺次相接组成的图形。2、四边形定义:在同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形。3、多边形的定义:定义1:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接所组成的(封闭)图形。多边形多边形按组成它的线段条数分成三角形、四边形、五边形…其中三角形是最简单的多边形。定义2:如果一个多边形...
多边形和圆的初步认识 知识讲解【学习目标】1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;2. 在具体情景中认识多边形、正多边形、圆、扇形;3. 能根据扇形和圆的关系求扇形的圆心角的度数;4.在丰富的活动中发展有条理的思考和表达能力.【要点梳理】要点一、多边形及正多边形1. 定义:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边...
多边形边数和内角和的关系多边形边数和内角和的关系:1、三角形:三条边和三个内角的和为180°。 2、正方形:四条边和四个内角的和为360°。3、正多边形:n条边和(n-2)个内角的和为180°(n-2) 。4、任意多边形:多边形边数和内角和满足了巴罗定理:任意多边形有n条边,有(n-2)个内角,它们的和等于(n-2)×180°。从上面可以看出,不管是三角形、正方形还是正多边形,任意多边形都有一个共...
多边形的平面镶嵌郝易18号一、1.概念:从数学的角度看,用不重叠摆放的多边形把平面的一部分完全覆 盖用形状和大小完全相同的一种或几种平面图形进行拼接,彼此之间 不留空隙、不重叠地铺成一片,这就是平面图形的密铺;通常把这类 问题叫做用多边形的平面镶嵌。2.正n边形的镶嵌:内角和一个内角是否能整 除360能否密铺正三角形180度60度是是正方形多边形360度99度是是正五边形540度108度否否正六边...
多边形的对角线公式怎么计算对角线的数量多边形共有n×(n-3)÷2个对角线。因为每个顶点和它自己及相邻的两个顶点都不能做对角线,所以n边形的每个顶点只能和n-3个其他的顶点之间做对角线,又因为每一条对角线都要连结两个顶点,所以要除以2。1多边形的对角线与边数的关系多边形的对角线的总数d与边数n的关系式为:d=n(n-3) /2。因为每个顶点和它自己及相邻的两个顶点都不能做对角线,所以n边形的每个顶...
课题 多边形(第一课时) ...
多边形多边形内角和定理多边形内角和定理可以追溯到古希腊时期,一般认为是由希腊数学家厄斯托勒斯在前四世纪时发现的,后由其他数学家和哲学家进一步发展完善。它声称:任意的n边形的内部角度之和为(n-2)180oo这一定理也被称为杨辉定理和狄克斯特拉定理。它一般用于计算多边形的内部角度之和,也可以用于推导其他关于多边形的定理。多边形内角和定理的证明有各种不同的方法,最常见的方法也许是通过构造直角三角形,在...
多边形的内角和外角多边形是指由一定数量的直线段组成的图形,其中相邻直线段之间没有交点且连续组成闭合曲线。多边形的内角和外角是我们在几何学中经常遇到的概念。一、多边形的内角和外角定义多边形的内角是指从多边形的一个顶点出发,所得到的两条相邻边之间的夹角。多边形的外角是指从多边形的一个顶点出发,所得到的一条边的延长线与另一条边之间的夹角。二、多边形的内角和外角的性质1. 多边形的内角和为180°:&nb...
多边形的周长计算在几何学中,多边形是一种有限个直线段组成的图形,每个直线段连接两个相邻的顶点。多边形的周长是指所有直线段的长度的总和。计算多边形的周长可以通过将每条边的长度相加来获得。下面将介绍几种不同类型多边形周长的计算方法。1. 三角形的周长计算:三角形是最简单的多边形,由三条边组成。计算三角形的周长只需将三条边的长度相加即可。假设三角形的三条边分别为a、b、c,那么周长C= a + b +...
第五单元 四边形第19讲 多边形与平行四边形一、知识清单梳理多边形知识点一:多边形 关键点拨与对应举例1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角...
《多边形的内角和》优秀教学设计《多边形的内角和》优秀教学设计作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,借助教学设计可以提高教学效率和教学质量。我们该怎么去写教学设计呢?以下是店铺整理的《多边形的内角和》优秀教学设计,希望对大家有所帮助。学情分析:学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分...
voronoi多边形荷兰气候学家A·H·Thiessen提出了一种根据离散分布的气象站的降雨量来计算平均降雨量的方法,即将所有相邻气象站连成三角形,作这些三角形各边的垂直平分线,于是每个气象站周围的若干垂直平分线便围成一个多边形。用这个多边形内所包含的一个唯一气象站的降雨强度来表示这个多边形区域内的降雨强度,并称这个多边形为泰森多边形。泰森多边形每个顶点是每个三角形的外接圆圆心,泰森多边形也称为V...
求多边形边数的两种方法一、算术方法我们知道:对于边数是的凸多边形而言,其外角的和是常数即360º,与多边形的边数无关。当已知正多边形的一个外角(或内角)度数大小时,可直接由求出边数。例1.已知一个正多边形的每个外角都是72º,求多边形的边数。解:因为外角的和是360º,所以,边数=.例2.已知一个正多边形的每个内角都是144º,求多边形的边数。解:因为正多边形的每个外角都是180º-144º=36...
多边形的面积计算与边长关系以及角度关系多边形是指具有三条或三条以上边的平面图形。在几何学中,计算多边形的面积是一项重要的任务。本文将介绍多边形的面积计算方法,并探讨面积与边长、角度之间的关系。一、多边形面积计算方法1. 三角形面积计算三角形是最简单的多边形形状,其面积计算可以使用以下公式: 面积 = 1/2 * 底边长 * 高多边形2. 正多边形面积计算正多边形是指所有边相等且所有角度相等的多边形...
ArcGIS 9.3线转面的方法 ArcGIS作为GIS软件中的龙头老大,其功能是非常强大的,但是如果作为一个初学者,其部分常用的重要功能不容易掌握,今天就讲一讲在矢量化时非常重要的功能:线转面。 ArcGIS在进行大范围的矢量化时一般很少直接画多边形,这是因为shape文件不具备拓扑,在处理多个相邻多边形时不方便,因此,一般是先用线把地类图斑勾绘出来,然后将线转为多边形。在ArcGI...
《11.3.1 多边形》一、学习目标1.知道多边形、多边形的内角、多边形的外角、多边形的对角线和正多边形的有关概念.2.能够解决与多边形的对角线有关的问题.二、导学指导与检测导学导学检测及课堂展示阅读课本 p19--20页,完成下列问题:1.多边形:在平面内,由一些线段 相接组成的_ 叫做多边形.其中 &n...
初一数学 多边形的性质及应用1、下列命题中,正确的是 A.由一些线段相接组成的图形叫做多边形B.三角形不是...
多边形的顶点数公式多边形的顶点计算公式:F-E+V=2、V+FE=2等。V+FE=2即欧拉公式:对于任意多边形(即各面都是平面多边形并且没有洞的立体),假设F,E和V分别表示面,棱(或边)、角(或顶)的个数,那么F-E+V=2.多边形的顶点数V,棱数E和面数F。多边形是指四个或四个以上多边形所围成的立体。设多边形的边数为n,则顶点数也为n,n个顶点中任意两点连线的条数=组合C(n,2)=n(n-1...
多边形的性质多边形是初中数学中常见的几何图形,它由多个直线段组成,每个直线段称为多边形的边,相邻两条边之间的夹角称为多边形的内角。在学习多边形的性质时,我们可以通过举例、分析和说明的方式来帮助中学生更好地理解和掌握。一、多边形的定义和分类多边形是由三条或三条以上的线段组成的封闭图形,其中任意两条线段之间只有一个公共端点,并且不在同一条直线上。根据边的数量,多边形可以分为三角形、四边形、五边形等等。...
11.3 多边形及其内角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是( ) A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是( ) A.9&...
泰森多边形(Voronoi图)生成算法作者谢卫国创建时间2008-10-27审核人审核时间2008-10-27文档状态草稿文档版本Ver 1.0审批人审批时间最后修改人谢卫国最后修改时间2008-10-27文档编号面向人员技术开发人员一、 文档目的本文描述了在geomodel模块中,生成泰森多边形所使用的算法。二、 概述GIS和地理分析中经常采用泰森多边形进行快速插值,和分析地理实体的影响区域,是...
《多边形》评课稿(通用6篇)《多边形》评课稿(通用6篇)作为一名老师,通常会被要求编写评课稿,编写评课稿助于积累教学经验,不断提高教学质量。我们该怎么去写评课稿呢?下面是小编为大家收集的《多边形》评课稿,仅供参考,欢迎大家阅读。《多边形》评课稿 篇1x老师在整节课中一直是学生学习活动的组织者、指导者和合作者,而学生则是一个发现者、探索者,有效地发挥他们的学习主体作用,是一节成功的新授课。在本节课上...
5.多边形基础题训练1.下列图形不是凸多边形的是( D )2.下列图形中,是正多边形的是( C )A. 等腰三角形 B. 长方形 C. 正方形 D. 五边都相等的五边形3.从五边形一个顶点出发,可以引___2____条对角线,把五边形分成____3___个三角形;从八边形的一个顶点出发,可以引___5____条对角线,将...
蒙氏数学认识多边形第一篇:蒙氏数学认识多边形汉沽实验幼儿园教师教育教学观摩活动方案设计执教教师:王梦迪时间:2014年10月20日 班 级:大班活动内容:大班蒙氏数学《认识多边形》 活动目标:1.通过观察和比较正五边形、正八边形和正十边形,感知其主要特征。2.通过动手操作,激发幼儿学习图形的兴趣。3.培养幼儿观察、辨别的能力。活动重点:观察和比较正五边形、正八边形和正十边形,感知其主要特征。活动难...
初中人教版数学八年级11.3《多边形及其内角和》教学目标1、知识目标:了解多边形内角和公式。2、数学思考:通过把多边形转化成三角形的运用,体会从特殊到一般的认识问题的方法。3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法。4、情感态度目标:通过猜想、推理活动探索以及数学结论的确定性,提高学生学习热情。教学重、难点重点:探索多边形内角和。难点:探索多边形内角和时,如何把多边形...
一、选择题(本大题共11小题,共33.0分)1.六边形的内角和是()A.540°B.720°C.900°D.1080°2.将一个长方形纸片剪去一个角,所得多边形内角和的度数不可能是()A.180°多边形B.270°C.360°D.540°3.在各个内角都相等的多边形中,一个外角等于一个内角的,则这个多边形的边数是()A.5B.6C.7D.84.设四边形的内角和等于a,五边形的外角和等于b,则a与b...
三角形多边形专题练习一.基础题1.一个多边形内角和是10800,则这个多边形的边数为 ( )A、 6 B、 7 C、 8 D、 92.如图所示,已知△ABC为直角三角形,∠C=90...
求多边形边数的方法多边形求多边形的边数是“多边形及其内角和”一节的常见题型,本文将举例介绍几种求多边形边数的方法,以供读者学习参考.一.利用多边形的内角和公式计算例1.已知一个多边形的内角和是,则这个多边形的边数是_______.1440 解:设这个多边形的边数为,由多边形的内角和公式,得n , 化简得(2)1801440n -⋅= 28n -=解得,即该多边形的边数为10...
内角正n边形的内角和度数为:(n-2)×180度;正n边形的一个内角是(n—2)×180°÷n.外角正n边形外角和等于n·180°-(n-2)·180°=360°所以正n边形的一个外角为:360÷n。所以正n边形的一个内角也可以用这个公式:180°—360÷n.中心角任何一个正多边形,都可作一个外接圆,多边形的中心就是所作外接圆的圆心,所以每条边的中心角,实际上就是这条边所对的弧的圆心角,因此这个...
例1、一个多边形,它的外角最多有几个是钝角?说说你的理由.例2、一个五边形截去一个角后就一定是三角形吗?画出所有可能的图形,并分别说出内角和和外角和变化情况.例3、一个n 边形除了一个内角之外,其余各内角之和是1780度求这个多边形的边数n 和这个内角的度数?1、(1)六边形的内角和是 ,外角和是 &n...