磷酸铁锂
磷酸铁锂
分子式:LiMPO4,英文:Lithium iron phosphate,又称磷酸铁锂锂铁磷,简称LFP),是一种锂离子电池(可另外参见锂电池)的正极材料,也称为锂铁磷电池,特是不含等贵重元素,原料价格低且存在于地球的资源含量丰富,不会有供料问题。其工作电压适中(3.2V)、电容量大(170mAh/g)、高放电功率、可快速充电且循环寿命长,在高温与高热环境下的稳定性高。这个看似不起眼却引发锂电池革命的新材料,为橄榄石结构分类中的一种,矿物学中的学名称为 青你2triphyllite,是从希腊字的 tri- 以及 fylon 两个字根而来,在矿石中的颜可为灰,红麻灰,棕或黑
化学式
LiFePO4 正确的化学式应该是 LiMPO4,物理结构则为橄榄石三浦春马恋情曝光结构,而其中的 M 可以是任何金属,包括 Fe考研究生需要什么条件?、CoMnTi 等等,由于最早将 LiMPO4 商业化的公司所制造的材料是 C/LiFePO4,因此大家就这么习惯地把 Lithium iron phosphate 其中的一种材料 LiFePO4螃蟹食物相克表 当
成是磷酸铁锂。然而从橄榄石结构的化合物而言,可以用在锂离子电池的正极材料并非只有 LiMPO4 一种,据目前所知,与 LiMPO4 相同皆为橄榄石结构的 Lithium iron phosphate 正极材料还有 A祖峰个人资料简介图片yMPO4、Li1-xMFePO4、LiFePO4MO 等三种与 LiMPO4 不同的橄榄石化合物(均可简称为LFP)。
发现
自1996年日本的 NTT 首次揭露 AyMPO4(A为碱金属,M 为 Co Fe 两者之组合:LiFeCoPO4)的橄榄石结构的锂电池正极材料之后,1997年美国得克萨斯州立大学 John. B. Goodenough 等研究,也接着报道了 LiFePO4 的可逆性地迁入脱出锂的特性[1],美国与日本不约而同地发表橄榄石结构(LiMPO4),使得该材料受到了极大的重视,并引起广泛的研究和迅速的发展。与传统的锂离子二次电池正极材料,尖晶石结构的 LiMn2O4 和层状结构的 LiCoO2 相比,LiMPO4 的原物料来源更广泛、价格更低廉且无环境污染。
运作原理
LFP 橄榄石结构的锂电池正极材料,已经有多家上游专业材料厂展开量产,预料将彻底大
幅扩张锂电池的应用领域,将锂电池带到扩展至电动自行车油电混合电动车的新境界;日本东京工业大学山田淳夫教授所领导的一个研究小组,在2008年8月11日出版的《自然·材料》报告说,磷酸锂铁离子电池将会被用作清洁环保的电动汽车的动力装置,其前景被普遍看好。由山田淳夫教授所领导的东京工业大学与东北大学的联合研究人员,使用中子射线照射磷酸铁,然后分析中子和物质之间的相互作用来研究锂离子在磷酸铁中的运动状态。研究人员的结论是,在磷酸锂铁中,锂离子按照一定方向笔直地扩散开去,这与锂离子在现有的钴等电极材料中的运动方式不同。这样的结论与原先推估的理论完全一致,使用中子衍射分析的结果,更加证实了磷酸锂铁(LFP)可以确保锂电池的大电流输出输入的安全性。
物理化学性质
磷酸锂铁化学分子式的表示法为:LiMPO4,其中锂为正一价;中心金属铁为正二价;磷酸根为负三价,中心金属铁与周围的六个氧形成以铁为中心共角的八面体 FeO6,而磷酸根中的磷与四个氧原子形成以磷为中心共边的四面体 PO4,借由铁的 FeO6 八面体和磷的 PO4 四面体所构成的空间骨架,共同交替形成 Z 字型的链状结构,而锂离子则占据共边的
空间骨架中所构成的八面体位置,晶格中 FeO6 通过 bc 面的共用角连结起来,LiO6 则形成沿着 b 轴方向的共边长链,一个 FeO6 八面体与两个 LiO6 八面体和一个 PO4 四面体共边,而 PO4 四面体则与一个 FeO6 八面体和两个 LiO6 八面体共边。在结晶学的对称分类上属于斜方晶系中的 Pmnb 空间单位晶格常数为 a=6.008Å,b=10.334Å,c=4.693Å,单位晶格的体积为 291.4Å3。由于结构中的磷酸基对整个材料的框架具有稳定的作用,使得材料本身具有良好的热稳定性和循环性能。
LiMPO4 中的锂离子不同于传统的正极材料 LiMn2O4 和 LiCoO2,其具有一维方向的可移动性,在充放电过程中可以可逆的脱出和迁入并伴随着中心金属铁的氧化还原。而 LiMPO4 的理论电容量为 170mAh/g,并且拥有平稳的电压平台 3.45V。其锂离子迁入脱出的反应如下所式:
锂离子脱出后,生成相似结构的 FePO4,但空间也为 Pmnb,单位晶格常数为 a=5.792Å,b=9.821Å,c=4.788Å,单位晶格的体积为 272.4Å3,锂离子脱出后,晶格的
体积减少,这一点与锂的氧化物相似。而 LiMPO4 中的 FeO6 八面体共顶点,因为被 PO43− 四面体的氧原子分隔,无法形成连续的 FeO6 网络结构,从而降低了电子传导性。另一方面,晶体中的氧原子接近于六方最密堆积的方式排列,因此对锂离子仅提供有限的通道,使得室温下锂离子在结构中的迁移速率很小。
在充电的过程中,锂离子和相应的电子由结构中脱出,而在结构中形成新的 FePO4 相,并形成相界面。在放电过程中,锂离子和相应的电子迁入结构中,并在 FePO4 相外面形成新的 LiMPO4 相。因此对于球形的正极材料的颗粒,不论是迁入还是脱出,锂离子都要经历一个由外到内或者是由内到外的结构相的转换程[1][2]。材料在充放电过程中存在一个决定步骤,也就是产生 LixFePO4 / Li1-xFePO4 两相界面。随着锂的不断迁入脱出,界面面积减小,当到达临界表面积后,生成的 FePO4 电子和离子导电率均低,成为两相结构。因此,位于粒子中心的 LiMPO4 得不到充分利用,特别是在大电流的条件下。
若不考虑电子导电性的限制,锂离子在橄榄石结构中的迁移是通过一维通道进行的,并且锂离子的扩散系数高,并且 LiMPO4 经过多次充放电,橄榄石结构依然稳定,铁原子依然处于八面体位置,可以做为循环性能优良的正极材料[3]。在充电过程中,铁原子位于八面
体位置,均处于高自旋状态。
在产业上的应用
首先采用这种锂电池材料的油电混合车是 GM 的 CHEVROLET Volt,这部插电式油电混合车(PHEV)将在2010年正式在市面上销售,它突出的省油性能与驾控的舒适,使得它尚未销售,目前已经有将近四万名美国民众抢先订购;Volt每次充电后的续航力为60公里,若遇到长途旅程,车上则搭载了小型汽油引擎来为电池充电,让 Volt 能跑得更远。GM 相信这款 PHEV 能拥有 150mpg 的油耗表现。在日本与中国大陆则是有更多的锂电池厂纷纷投入这种新型动力锂电池的生产,目标市场就是电动自行车与电动公交车。
LFP上下游产业高速发展
目前 LFP 最上游的化合物专利被三家专业材料公司所掌握,分别是 A123 的 Li1-xMFePO4、Phostech 的 LiMPO4 以及 Aleees 的 LiFePO4MO,同时也已经发展出十分成熟的量产技术,其中最大的产能已可达月产250吨。A123 的 Li1-xMFePO4主要的特征是纳米级的 LFP,借由纳米物理性质的改变以及在正极材料当中添加了贵金属,并辅佐特殊材质的
石墨为负极,使得原本导电能力较差的 LFP,可以成为商业化应用的产品;Phostech 的 LiMPO4 主要特征是借由适当 Mn、Ni、Ti 的参杂,并且在 LFP 外层借由适当的碳涂布,来增加电容量与导电性;Aleees 的 LiFePO4MO 的主要特征是以氧为共价键,借由前驱物在高过饱和度与激烈机械搅拌力的状态下,造成金属氧化物与磷化物发生激动起晶之作用,从而产生金属氧化物共晶 LFP 的晶核,使得原本难以控制的二价铁与晶相成长,得到了稳定的控制。
这些上游材料的突破与快速发展,引起了锂电池厂与汽车业者的注意,并且带动了锂电池与油电混合车的兴盛之路;LFP电池和一般锂电池同为绿环保电池,但两者最大不同点是完全没有过热或爆炸等安全性顾虑,再加上电池循环寿命约是锂电池的4~5倍,高于锂电池8~10倍高放电功率(可瞬间产生大电流),加上同样能量密度下整体重量,约较锂电池减少30~50%,包括美国国防部的油电混合坦克车与悍马车(近战隐匿)、通用汽车、福特汽车、丰田汽车等业者皆高度重视LFP电池发展。A123甚至因此获得了高达数千万美金的政府补助,目的就是要扶植美国的锂电池业者,利用油电混合车的发展机遇,一举击败遥遥领先的日本汽车业者。
从各国发展来看,美国汽车产业界预估到2010年时全美的油电混合车将超过400万台。美国通用汽车为了打破日系车厂独霸局面,决定大幅朝向设计生产“可大规模生产的电动车”,因为现在许多美国消费者早已不堪高油价压力,通用认为未来汽车必须能够使用各种能源,其中电动车将成为关键。因此,GM在07年北美国际车展公开展示插电式油电混合动力车(Plug-in Hybrid Electric Vehicle,PHEV)的概念车“Chevrolet Volt Concept”,配合GM全新开发油电混合动力系统(E-FLEX),只要接上一般家用电源便可为该车的磷酸锂铁电池充电。如果Volt Concept达到量产阶段,每台车每年可减少500加仑(1,900升)汽油消耗,也可以减少4,400公斤二氧化碳产出。
GE、Google、巴菲特与欧洲大厂纷纷宣布进入LFP产业
电脑自动重启是怎么回事面对如此锐不可挡的发展,一些工业银行、创投基金与投资公司早就把目光放在上游材料公司的布局上,除了上述三家公司之外,在美国除了A123之外,ActaCell Inc.刚刚从谷歌(Google)旗下、应用材料(AMAT)风险投资部门和其他一些风险投资公司得到了580万美元资助。ActaCell的主要业务就是将德州大学学者的成果推向市场,这个学者就是长期以发展尖晶石结构以及超导材料为主的Arumugam Manthiram教授,他早期在UT担任
研究助理,之后逐渐升为教授,这几年他发现了在磷酸铁锂(LFP)当中,加入了昂贵的导电高分子之后,可以在实验室做出克电容量166mAh/g的磷酸铁锂(LFP),并且采用微波法加速磷酸铁锂(LFP)陶瓷粉末快速成相。至于是否因为加入了导电高分子,就可以突破A123、Aleees、Phostech等三家重量级业者在磷酸铁锂(LFP)的主要专利与次级改良专利布局,只能等到事态更加明朗方能评论。