2018年普通高等学校招生全国统一考试新课标1卷
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=
A.{0,2} B.{1,2} C.{0} D.{-2,-1,0,1,2}
解析:选A
2.设z=+2i,则|z|=
A.0 B. C.1 D.
解析:选C z=+2i=-i+2i=i
建设前经济收入构成比例 建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
解析:选A
4.已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为
A. B. C. D.
解析:选C ∵ c=2,4=a2-4 ∴a=2 ∴e=
A.12π B.12π C.8π D.10π
解析:选B 设底面半径为R,则(2R)2=8 ∴R=,圆柱表面积=2πR×2R+2πR2=12π
6.设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为
A.y=-2x B.y=-x C.y=2x D.y=x
解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x3+x f′(x)=3x2+1 f′(0)=1 故选D
7.在ΔABC中,AD为小学四年级数学下册教学计划BC边上的中线,E为AD的中点,则=
A. - B. - C. + D. +
解析:选A 结合图形,=- (+)=- -=- -(-)= -
8.已知函数f(x)=2cos2x-sin2x+2,则
A.f(x)的最小正周期为π,最大值为3
B.f(x) 的最小正周期为π,最大值为4
C.f(x) 的最小正周期为2π,最大值为3
D.f(x)的最小正周期为2π,最大值为4
解析:选B f(x)= cos2x+ 故选B
9.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M核能在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为
A.2 B.卓毓彤2 C.3 D.2
解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长
10.在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为300,则该长方体的体积为
A.8 B.6 C.8 D.8
解析:选C ∵AC1与平面BB1C1C所成的角为300 ,AB=2 ∴AC1=4 BC1=2 BC=2 ∴CC1=2
V=2×2×2=8
11.已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a-b|=
A. B. C. D.1
解析:选B ∵cos2α= 2cos2α-1= cos2α= ∴sin2α= ∴tan2α=
又|tanα|=|a-b| ∴|a-b|=
12.设函数f(x)= ,则满足f(x+1)< f(2x)的x的取值范围是
A.(-∞,-1] B.(0,+ ∞) C.(-1,0) D.(-∞,0)
解析:选D x≤-1时,不等式等价于2-x-1<2-2x,解得x<1,此时x≤-1满足条件
-1<x≤0时,不等式等价于1<2-2x, 解得x<0, 此时-1<x<0满足条件
x>0时,1<1不成立 故选D
二、填空题(本题共4小题,每小题5分,共20分)
13.已知函数f(x)=log2(x2+a),若f(3)=1,则a=________.
解析:log2(9+a)=1,即9+a=2,故a=-7
14.若x,y满足约束条件,则z=3z+2y的最大值为_____________.
解析:答案为6
15.直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.
解析:圆心为(0,-1),半径R=2,线心距d=文件夹隐藏了怎么恢复,|AB|=2=2
16.△ABC的内角A,B,C的对边分别为a,b,c,已知bsinC+csinB=4asinBsinC,b2+c2-a2=8,则△ABC的面积为________.
解析:由正弦定理及bsinC+csinB=4asinBsinC得2sinBsinC=4sinAsinBsinC ∴sinA=
由余弦定理及b2+c2-a2=8得2bccosA=8,则A为锐角,cosA=, ∴bc=
∴S=bcsinA=
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=.
(1)求b1,b2,b3;
(2)判断数列{bn}是否为等比数列,并说明理由;
(3)求{an}的通项公式.
解:(1)由条件可得an+1=an.
将n=1代入得,a2=4a1,而a1=1,所以,a2=4.
将n=2代入得,a3=3a2,所以,a3=12.
从而b1=1,b2=2,b刘晓洁比基尼3=4.
(2){bn章子怡小时候}是首项为1,公比为2的等比数列.
由条件可得=,即bn+1=2bn,又b1=1,所以{bn}是首项为1,公比为2的等比数列.
(3)由(2)可得=2n-1,所以an=n·2n-1.
18.(12分)
如图,在平行四边形ABCM中,AB=AC=3,∠ACM=900,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.
(1)证明:平面ACD⊥平面ABC;
(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q-ABP的体积.
18.解:(1)由已知可得,∠BAC=90°,BA⊥AC.
又BA⊥AD,所以AB⊥平面ACD.
又AB平面ABC, 所以平面ACD⊥平面ABC.
(2)由已知可得,DC=CM=AB=3,DA=3.
又BP=DQ=DA,所以BP=2.
作QE⊥AC,垂足为E,则QE//DC,且QE=DC.
由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.
因此,三棱锥Q-ABP的体积为V=×QE×SΔABP=×1××3×2×sin450=1
19.(12分)
发布评论