2017年全国统一高考数学试卷(理科)gem邓紫棋
2022年的祝福语
(全国新课标
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为(  )
A.3    B.2    C.1    D.0
2.(5分)设复数z满足(1+i)z=2i,则|z|=(  )
A.    B.    C.    D.2
3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是(  )
七夕快乐
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为 (  )
A.﹣80    B.﹣40    C.40    D.80
张馨予老公背景
5.(5分)已知双曲线C:=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为(  )
许榕真A.=1    B.=1    C.=1    D.半妖司藤的孩子是谁的=1
6.(5分)设函数f(x)=cos(x+),则下列结论错误的是(  )
A.f(x)的一个周期为﹣2π
B.y=f(x)的图象关于直线x=对称
C.f(x+π)的一个零点为x=
D.f(x)在(,π)单调递减
7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为(  )
A.5    B.4    C.3    D.2
8.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为(  )
A.π    B.    C.    D.
9.(5分)等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6
项的和为(  )
A.﹣24    B.﹣3    C.3    D.8
10.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为(  )
A.    B.    C.    D.
11.(5分)已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=(  )
A.﹣    B.    C.    D.1
12.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若,则λ+μ的最大值为(  )
A.3    B.2    C.    D.2
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)若x,y满足约束条件,则z=3x﹣4y的最小值为     
14.(5分)设等比数列{an}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4=     
15.(5分)设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是     
16.(5分)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
当直线AB与a成60°角时,AB与b成30°角;
当直线AB与a成60°角时,AB与b成60°角;
直线AB与a所成角的最小值为45°;
直线AB与a所成角的最小值为60°;
其中正确的是     .(填写所有正确结论的编号)
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。
17.(12分)ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.
(1)求c;
(2)设D为BC边上一点,且ADAC,求ABD的面积.
18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得
下面的频数分布表: