1、答题前填写好自己的姓名、班级、考号等信息
2、请将答案正确填写在答题卡上
2023-2024学年上海市静安区高中数学人教A 版 必修二
第九章 统计专项提升(6)如何设置无线路由器的密码
欠我一个拥抱>陈勋奇电视剧姓名:____________  班级:____________  学号:____________
考试时间:120分钟
满分:150分
题号一二三
总分
评分
*注意事项:
阅卷人得分
一、选择题(共12题,共60分)
117118118.5119.5
1.
学生在一门功课的22次考试中,所得分数如下茎叶图所示,则此学生该门功课考试分数的极差与中位数之和为(    )
A.    B.    C.    D. 15,5,25
周奇15,15,15
10,5,30
15,10,20
2. 某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采取分层抽样法抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为(  )A.    B.    C.    D. 1或3,2
3,2
1或3,1或3
3,3
3. 数据:1,1,3,3的众数和中位数分别是(  )A.    B.    C.    D. 12
8
5
9
4. 北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”一亮相,好评不断,这是一次中国文化与奥林匹克精神的完美结合,现工厂决定从20只相同的“冰墩墩”,15只相同的“雪容融”和10个相同的北京2022年冬奥会会徽中,采用分层随机抽样的方法,抽取一个容量为n 的样本进行质量检测,若“冰墩墩”抽取了4只,则n 为(  )A.    B.    C.    D. 这100个数据中一定有75个数小于或等于9.3把这100个数据从小到大排列后,9.3是第75个数据今年是多少个教师节
5. 已知100个数据的第75百分位数是9.3,则下列说法正确的是(      )A. B.
把这100个数据从小到大排列后,9.3是第75个与第76个数据的平均数把这100个数据从小到大排列后,9.3是第75个与第74个数据的平均数
C.    D. 6. 一组数据按从小到大的顺序排列为1,4,4, , 7,8(
其中),若该组数据的中位数是众数的倍,则该组数据的方
差是( )A.
B.
C.
D.
2022.522.7525
7. 某科技研究所对一批新研发的产品长度进行检测(单位:mm ),下图是检测结果的频率分布直方图,据此估计这批产品的中位数为(
A.    B.    C.    D. n <m n >m
n=m
不能确定
8. 样本(x 1 , x 2…,x n )的平均数为x ,样本(y 1 , y 2 , …,y m )的平均数为
(  ≠  ).若样本(x 1 , x 2…,x n  , y
1 , y
2 , …,y m )的平均数
=α  +(1﹣α)
,其中0<α<
,则n ,m 的大小关系为(  )
A.    B.    C.    D. 1
3
4
5
9. 关于统计数据的分析,有以下几个结论:①一组数不可能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差发生变化;③调查剧院中观众的观看感受时,从50排(每排人数相同)中任意抽取一排的人进行调查,属于分层抽样;④一组数据的方差一定是正数;⑤如图所示是随机抽取的200辆汽车通过某一段公路时的时速分布直方图,根据这个直方图,可以得到时速在[50,60]的汽车大约是60辆
则这五种说法中错误的个数是(    )A.    B.    C.    D. 总体
个体
总体的一个样本
样本容量
10. 为了了解某批零件的长度,从中抽查了100个零件的长度,在这个问题中,这100个零件的长度是(  )A.    B.    C.    D. 11. 为庆祝中国共产党成立100周年,深入推进党史学习教育,引导干部学史明理、学史增信、学史崇德、学史力行,某中学党支部组织学校初、高中两个学部的党员参加了全省教育系统的党史知识竞赛活动,其中初中部20名党员竞赛成绩的平均分为a ,方差为2;高中部50名党员竞赛成绩的平均分为b ,方差为
.若
,则该学校全体参赛党员竞赛成绩的方差为( )
A.    B.    C.    D.
12. 2022年2月20日,第24届冬季奥林匹克运动会闭幕,中国代表团夺得9枚金牌、4枚银牌、2枚铜牌,下表是本届冬奥会夺得金牌数前10名的代表团获得的金牌数、银牌数、铜牌数、奖牌总数:
金牌数的众数是16
银牌数的中位数是7铜牌数的平均数是9奖牌总数的极差是22
排名代表团金牌数银牌数铜牌数奖牌总数1挪威16813372德国12105273中国942154美国8107255瑞典855186荷兰854177奥地利774188瑞士
725149
俄罗斯奥委会6
12143210法国
5
7
2
14
则对这10个代表团来说,下列结论正确的是(  )A.    B.    C.    D. 13. 有一个容量为200的样本,其频率分布直方图如图所示,据图知,落在  内的样本个数为                        .
14. 某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家,为了掌握各商店的营业情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的中型商店数有                        家.
15. 已知样本7,8,9,  的平均数是9,且  ,则此样本的方差是                        .
16. 为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为                        .
17. 某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,  ,  ,
excel计算公式
(单位:克)中,经统计得频率分布直方图如图所示.
(1) 经计算估计这组数据的中位数;(2) 现按分层抽样从质量为
的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个
在内的概率.
(3) 某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?
18. 网课是一种新兴的学习方式,它以互联网为平台,为学习者提供包含视频、图片、文字等多种形式的系列学习课程,成为许多学生在假期实现自主学习的重要手段.为了调查某地区高中生一周网课学习的时间,随机抽取了500名上网课的学生,将
他们一周上网课的时间,(单位:h)按,,,,分组,得到频率分布直方图如图所示.
附:,.
0.100.050.0250.0100.0050.001
2.706
3.841  5.024  6.6357.87910.828
(1) 求a的值,并估计这500名学生一周上网课时间的中位数(结果精确到0.01);
(2) 按照分层抽样的方法从网课学习时间在和的学生中抽取5人,然后从这5名学生中随机抽取2人进行访谈,求这2名学生恰好来自不同组的概率;
(3) 为了了解学生与家长对上网课的态度是否具有差异性,研究人员随机抽取了200名家长与学生进行调查,其中家长占总人数的一半,且不支持上网课的家长占总人数的35%,不支持上网课的学生占总人数的25%,请将下面列联表补充完整,并判断是否有99.5%的把握认为学生与家长对网课的态度具有差异性.
支持上网课不支持上网课合计
家长
学生
合计200
19. 去年“十•一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费
站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公
路的车速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后,得到如图的频率分布直方图.
(I)调查公司在抽样时用到的是哪种抽样方法?
(II)求这40辆小型汽车车速的众数和中位数的估计值;
(III)若从这40辆车速在[60,70)的小型汽车中任意抽取2辆,求抽出的2辆车车速都在[65,70)的概率.
20. 2020年是脱贫攻坚的收官之年,为了响应国务院扶贫办确定的“精准扶贫”政策,某单位决定定点帮扶甲、乙两村各50户贫困户,为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x.将指标x按照[0,0.2),[0.2,0.4),[0.4,0.6),[0.6,0.8),
分成五组,得到如图所示的频率分布直方图.规定:
若0≤x<0.6,则认定该户为“绝对贫困户”否则认定该户为“相对贫困户”已知此次调查中甲村的“绝对贫困户”占甲村贫困户的24% (1) 根据频率分布直方图求这100户村民贫困指标x的平均值及甲、乙两村“绝对贫困户”的总户数;(同一组中的数据用该组区间的中点值代表)
(2) 完成下面的列联表,并判断是否有90%的把握认为绝对贫困户数与村落有关
甲村乙村总计
绝对贫困
相对贫困
总计
P(K2≥k0
0.150.100.050.0250.0100.0050.001
k0  2.072  2.706  3.841  5.024  6.6357.87910.828
附:,其中.
21. 为推进“千村百镇计划”,年月某新能源公司开展“电动莆田绿出行”活动,首批投放台型新能源车到莆田
多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对型新能源车性能的评价情况,该公司要求每位
试用者填写一份性能综合评分表(满分为分).最后该公司共收回份评分表,现从中随机抽取份(其中男、女
的评分表各份)作为样本,经统计得到如下茎叶图:
(1) 求个样本数据的中位数;
(2) 已知个样本数据的平均数,记与的最大值为.该公司规定样本中试用者的“认定类型”:评分不小于
的为“满意型”,评分小于的为“需改进型”.
①请根据个样本数据,完成下面列联表:
根据列联表判断能否有的把握认为“认定类型”与性别有关?
②为做好车辆改进工作,公司先从样本“需改进型”的试用者按性别用分层抽样的方法,从中抽取8人进行回访,根据回访意见改进车辆后,再从这8人中随机抽取3人进行二次试用,记这3人中男性人数为,求的分布列及数学期望.