专题35 利用二项分布期望方差公式求解期望方差
一、单选题
1.在一个箱子中装有大小形状完全相同的有4个白球和3个黑球,现从中有放回地摸取5次,每次随机摸取一球,设摸得的白球个数为X,黑球个数Y,则( )
A. B.
C. D.
2.已知随机变量X服从二项分布,即,且,,则二项分布的参数n,p的值为( )
A., B., C., D.,
3.若随机变量服从二项分布,则( )
A. B. C. D.
4.若随机变量服从二项分布,则的期望( )
A.0.6 B.3.6 C.2.16 D.0.216
5.若随机变量,且,则( )
A.64 B.128 C.36 D.32
A. B.
C. D.
7.某同学参加学校篮球选修课的期末考试,老师规定每个同学罚篮20次,每罚进一球得5分,不进记0分,已知该同学罚球命中率为60%,则该同学得分的数学期望和方差分别为( ).
A.60,24 B.80,120 C.80,24 D.60,120
8.已知随机变量,若,,则( )
A.54 B.9 C.18 D.27
9.已知随机变量服从二项分布,且,则( )
A.10 B.15 C.20 D.30
10.为响应国家“足球进校园”的号召,某校成立了足球队,假设在一次训练中,队员甲有10次的射门机会,且他每次射门踢进球的概率均为0.6,每次射门的结果相互独立,则他最有可能踢进球的个数是( )
A.5 B.6
C.7 D.8
二、多选题
11.下列判断正确的是( )
A.若随机变量服从正态分布,,则
B.已知直线平面,直线平面,则“”是“”的必要不充分条件
C.若随机变量服从二项分布:,则
D.是的充分不必要条件
三、解答题
12.某单位在2020年8月8日“全民健身日”举行了一场趣味运动会,其中一个项目为投篮游戏.游戏的规则如下:每个参与者投篮3次,若投中的次数多于未投中的次数,得3分,否则得1分.已知甲投篮的命中率为,且每次投篮的结果相互独立.
(1)求甲在一次游戏中投篮命中次数的分布列与期望;
(2)若参与者连续玩次投篮游戏获得的分数的平均值不小于2,即可获得一份大奖.现有和两种选择,要想获奖概率最大,甲应该如何选择?请说明理由.
13.近年来我国电子商务行业迎来蓬勃发展的新机遇,2016年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)完成下面列联表,并通过计算说明是否可以在犯错误概率不超0.1%的前提下,认为商品好评与服务好评有关?
对商品好评 | 对商品非好评 | 合计 | |
对服务好评 | |||
对服务非好评 | |||
合计 | |||
参考数据及公式如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
(,其中)
(2)若将频率视为概率,某人在该购物平台上进行的次购物中,设对商品和服务全好评的次数为随机变量:
①求对商品和服务全好评的次数的分布列(概率用组合数算式表示);
②求的数学期望和方差.
14.中国华为手机的芯片均从台积电、联发科、高通三个外国公司进口,设其进口数量的频率如图.
(1)若用分层抽样的方法从库存的芯片中取枚芯片,属于台积电的芯片有几枚?
(2)在(1)的条件下,从取出的枚芯片中任取枚,设这枚中属于台积电的芯片数为,求的分布列和数学期望;
(3)在华为公司海量库存中任取枚芯片,其中属于台积电的芯片数为,求的数学期望.
15.疫情过后,为促进居民消费,某超市准备举办一次有奖促销活动,若顾客一次消费达到500元则可参加一轮抽奖活动,超市设计了两种抽奖方案.在一个不透明的盒子中装有6个质地均匀且大小相同的小球,其中2个红球,4个白球,搅拌均匀.
方案一:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得50元的返金券,若抽到白球则获得30元的返金券,可以有放回地抽取3次,最终获得的返金券金额累加.
方案二:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得100元的返金券,若抽到白球则不获得返金券,可以有放回地抽取3次,最终获得的返金券金额累加.
(1)方案一中,设顾客抽取3次后最终可能获得的返金券的金额为X,求X的分布列;
(2)若某顾客获得抽奖机会,试分别计算他选择两种抽奖方案最终获得返金券的数学期望,并以此判断应该选择哪种抽奖方案更合适.
16.某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的数据表:
爱好 | 不爱好 | 合计 | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合计 | 30 | 50 | 80 |
(1)将此样本的频率估计为总体的概率,随机调查了本校的3名学生、设这3人中爱好羽毛球运动的人数为,求的分布列和期望值:
(2)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
17.网上订外卖已经成为人们日常生活中不可或缺的一部分. M外卖平台(以下简称M外卖)为了解其在全国各城市的业务发展情况,随机抽取了100个城市,调查了M外卖在今年2月份的订单情况,并制成如下频率分布表.
订单:(单位:万件) | ||||||||
频率 | 0.04 | 0.06 | 0.10 | 0.10 | ||||
订单:(单位:万件) 大型网页游戏排行 | ||||||||
频率 | 0.30 | 0.20 | 0.10 | 0.08 | 0.02 | |||
(1)由频率分布表可以认为,今年2月份M外卖在全国各城市的订单数(单位:万件)近似地服从正态分布,其中为样本平均数(同一组数据用该区间的中点值作代表),为样本标准差,它的值已求出,约为3.64,现把频率视为概率,解决下列问题:
①从全国各城市中随机抽取6个城市,记今年2月份M外卖订单数Z在区间内的城市数为,求的数学期望(取整数);
②M外卖决定在该月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国2月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市开展营销活动,若每接一件外卖订单平均可获纯利润5元,但每件外卖订单平均需送出红包2元,则M外卖在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?
(2)现从全国开展M外卖业务的所有城市中随机抽取100个城市,若抽到K个城市的M外卖订单数在区间内的可能性最大,试求整数k的值.
参考数据:若随机变量服从正态分布,则,,.
发布评论