利用基因工程酵母生产抗疟疾药物前体--青蒿酸
Dae-Kyun Ro1*, Eric M. Paradise2*, Mario Ouellet1, Karl J. Fisher6, Karyn L. Newman1, John M. Ndungu3,
Kimberly A. Ho1, Rachel A. Eachus1, Timothy S. Ham4, James Kirby2, Michelle C. Y. Chang1, Sydnor T. Withers2,Yoichiro Shiba2, Richmond Sarpong3 & Jay D. Keasling1,2,4,5
(杨豫鲁翻译)
摘要:疟疾这种疾病威胁着全球三至五亿人的健康,并且每年杀死超过一百万的人口。抗药疟原虫突变系Plasmodium falciparum2,3的出现更严重阻碍了对这种疾病的控制。虽然人工合成的抗疟药以及相关疫苗已经出现,但其针对疟疾的效果仍需经受严格的临床检验45。而青蒿素,一种从Artemisia annua L(菊科植物,俗称青蒿)中提炼出来的倍半萜内酯环内过氧化物(C-15倍半萜),对抗药性疟原虫Plasmodium spp的抑制效果非常明显。可惜的是其供给量受自然因素等各方面限制,疟疾患者大都难以承受其昂贵的价格6。青蒿
素的人工全合成也非常困难,而且花费很大7。不过利用微生物工程发酵合成其前体青蒿酸(一种合成青蒿素的可靠来源),却是一个相对来说比较廉价、环保和高效的办法89。这里我们将介绍如何通过基因工程途径改造啤酒酵母使其高效合成青蒿酸(最高可达100ug/L):对其甲羟戊酸途径进行调控,并且转入编码amorphadiene 等价于amorpha-4,11-diene合成青蒿酸及青蒿素的最直接的前体原料合酶和一种特异的细胞P450(CYP71AV1)的基因。这两种酶均源自青蒿,而且后者经过三步氧化作用将amorpha-4,11-diene转变成青蒿酸。青蒿酸合成后被转运到胞外并附着在酵母外表面上,这意味着通过简单且廉价的纯化过程就可以获得目标产物。尽管这种基因工程酵母合成青蒿酸的能力相对于青蒿来说已经十分显著,仍需急切解决问题的是如何提高其生产效率从而扩大至工业规模生产,以便可以生产出足够多的青蒿酸来降低现有青蒿素的价格,让青蒿素综合疗法可以广泛地被应用到对疟疾的中去。
内容:我们通过三个步骤构建能合成青蒿酸的基因工程酵母:(1)改造酵母疟疾的青蒿素是用什么提炼的焦磷酸法尼酯(FPP)生物合成途径中的相关基因,增加FPP的合成并且设法减少它作为固醇类物质的前体去合成固醇;(2)将青蒿中的amorphadiene合酶基因ADS转入到高FPP生产株中,从而转化FPPamorphadiene;(3克隆青蒿中特异的细胞素P450酶基因(这种酶通过三步氧化将amorphadiene氧化成青蒿酸)并使其在amorphadiene生产株内表达(见图1)。青蒿素生物合成的第一步反应由ADS10催化,它已经被鉴定并且用于在大肠杆菌
1| 图中所示为同时表达CYP71AV1CPR的基因工程啤酒酵母菌株EPY224中青蒿酸的合成途径。蓝颜显示的是啤酒酵母甲羟戊酸合成途径中被直接正调节的基因;紫显示的是因upc2-1表达被间接正调节的基因; 红线指示菌株EPY224中被抑制的ERG9;绿箭头指示从焦磷酸法呢酯到青蒿酸的生物合成途径,这条途径已经从青蒿被完全引入到啤酒酵母当中,在CYP71AV1CPR共同作用下经过三步氧化将amorphadiene转变为青蒿酸。途径中间产物IPP, DMAPPGPP分别代表异戊烯焦磷酸酯、二甲基丙烯焦磷酸酯和焦磷酸牻牛儿酯。
中合成amor phadiene11。为了确定对是否要促进细胞内FPP的合成,我们将ADS基因插入由GAL1 启动子控制转录的pRS425质粒中,然后在酵母细胞中表达,结果显示单独转入ADS基因的酵母只合成少量的amorphadiene(图2,菌株EPY2014.4mg/L)。
2 |柱状图显示基因改造过程不同阶段啤酒酵母菌株的amorphadiene合成能力这些菌株的详细介绍请见正文。为减小实验误差,均在同一条件下培养144小时后取样测定,amorphadiene合成水平也被定量化。纵坐标表示总产量,为平均值±标准差(n =3)
所以,为了提高啤酒酵母合成amorphadiene的能力,我们对FPP合成途径进行了总共五次的基因工程改造。几个与FPP合成相关的基因的表达被正调控,而另外几个促使FPP转变成固醇的基因被负调控。同时为了保证宿主菌株的遗传稳定性,所有这些对宿主细胞进行的修饰都是通过染体融合进行的。具体过程如下:首先,将一种截短的水溶性酶3-羟基-3-甲基-戊二酰辅酶A还原酶我们所学生化书中为译为β-羟基-β-甲基-戊二酰辅酶A还原酶,简称HMGCoA还原酶,又简称tHMGR12,是固醇合成的限速酶)过表达,可提高amorphadiene的合成产量近五倍(图2,菌株 EPY208);其次,利用一个methioninerepressible启动子 (PMET3)13,通过对编码鲨稀合酶(固醇生物合成途径中FPP合成后第一步)的ERG9基因进行负调控,可将amor phadiene的合成量再增加两倍(图2,菌株EPY225);然后,尽管upc2-1, 一个可以加强UPC2(啤酒酵母中调节固醇合成的一个的通用转录因子)14活性的半显性突变体等位基因,在已有菌株 EPY208背景
下过表达(图2,菌株EPY210)对amorphadiene合成的提高起的作用并不显著,但结合对ERG9基因的负调控,其过表达可将amorphadiene的合成量提高到105mg/L(图2,菌株EPY213);再次,在酵母染体更远处在转进一个tHMGP拷贝可以将将其合成量再增加50%达到149mg/L(图2,菌株 EPY 219);最后,虽然编码FPP合酶的基因(ERG20)过表达对amorphadiene合成总量(图2,菌株 EPY224)的提高效果非常小,但在细胞密度降低的情况下其合成量却可增加10%。将所有这些对基因的修饰综合在菌株EPY224上,amorphad iene的合成量已经达到了153mg/L , 是之前所报道这种倍半萜()最大合成水平的几乎50015
(王易龙翻译)
现在我们已经得到了可以高效合成amorphadiene的酵母菌株,但为能将amor phadiene转变成青蒿酸,我们还需要到并分离出青蒿中编码催化amorphadiene转变成青蒿酸的酶的基因。青蒿素是一种倍半萜内酯衍生物,这些衍生物在菊科植物中普遍存在,是一类十分有特性的细胞次级代谢产物。我们假定菊科植物在半倍半萜内酯的合成的前几步中利用的是源于同一祖先的合成酶,据此对菊科植物进行了一次基因组比较分析。由于先前已经有
文章报道过对青蒿的无细胞化验,并且证明在青蒿中是一种特异的细胞素P45017amorphadie ne进行专一性羟化(图1)。我们直接从由向日葵和莴苣这两种菊科作物提供的基因数据构建的已表达序列标志(EST)数据库中检索得到细胞素P450已表达序列标志(ESTs。然后通过使用针对CYP71CYP82家族(P450酶在菊科植物中最多的两个家族)高度特异的简并引物,从青蒿毛状体细胞的互补DNA库中分离出几个特定的P450片段。接着利用BLAST分析法18将这些片段与向日葵和莴苣的ESTs比对,我们惊奇地发现有一个青蒿P450基因片段与来自以上两种植物的未知功能ESTs序列非常相似(氨基酸水平上达相似度达85-88%),而同其他非菊科植物的P450序列相似度较低(氨基酸水平上小于50%)。这表明相对于非菊科植物,P450基因在这三个亲缘关系较远的菊科植物属中是高度保守的。因此,从青蒿中分离出的这段P450基因是编码菊科保守性倍半萜内酯生物合成酶一个非常好的候选者。
随后相应的完整P450cDNACYP71AV1),一个编码495个氨基酸的开放阅读框,成功从青蒿中分离获得。系统进化分析法显示CYP71AV1和其他的P450s(像催化类单萜羟化的CYP71 D13/1819 催化倍半萜羟化的CYP71D2020以及二萜类化合物羟化的CYP71D16
21)有很近的亲缘关系。这进一步表明从青蒿中获得的P450在萜类化合物代谢中存在的潜在作用。为了保证异源表达的CYP71AV1可以发挥正常功能,协同它进行氧化还原反应的天然配体,NADPH:细胞素P450氧化还原酶(CPR),同样从青蒿中成功分离,并且其生化活性已经在体外被证实。(细胞素c NADPH 的米氏常数(Km)分别为4.3±0.7 μM 23.0±4.4 μM (平均值 ±标准差, n 3 ))
在配体分子CPR的参与下,我们研究了在活细胞体内CYP71AV1是否可以催化amorphadie ne转变为多级氧化产物:转基因酵母株EPY224中被转入了一个整合有CPRCYP71AV1基因并且由半乳糖诱导启动子调控的基因载体,经半乳糖的诱导表达后,用醚对酵母细胞体和培养基分别进行抽提,并对馏分进行气象谱质谱联合分析(GC–MS)。分析结果显示,在同时表达CYP71AV1 CPR的细胞株EPY224细胞体及其培养基中,一个独特的单谱峰被检测出,但是在只表达CPREPY224中并未检测到这个峰,并且,几乎95%的这种特异化合物是来源于细胞体的。而且这种化合物的电子碰撞质谱和保留时间与从青蒿中提取的青蒿酸的完全吻合(图 3)。在摇瓶培养条件下,同时表达CYP71AV1 CPREPY224菌株青蒿酸产量为32 ± 13 mg/L (平均数 ±标准差, n7)。更为重要的是,其中间代谢产物,青蒿醇和青蒿醛在细胞体和培养基中被检测到的量几乎可以忽略(青蒿醇的量
比青蒿素酸的5%还少,并且根本没有青蒿醛被检测出)。
我们证实,通过用碱性缓冲液(pH9Tris-HCL缓冲液中添加1.2M的山梨醇)清洗胞体沉淀物,绝大部分合成的青蒿酸(>96%)可以而被分离出,而且冲洗之后细胞体和培养基中的残留量仅为2%。青蒿酸不仅可以被高效的转移到细胞外,且在酸性条件下经过质子化后会被束缚在细胞表面。利用这个特点制定了一种便捷提纯方法:用醚对清洗缓冲液进行抽提,然后经过一步简单的凝胶柱层析分离抽提物,就可以得到纯度高于95%的青蒿酸。在一个一升发酵罐中,青蒿酸的产量为115mg,而通这种方法的,我们可以得到76mg的提纯产物。最重要的是,经 1H and13C原子核磁共振检测显示,这种酵母合成青蒿酸与从青蒿中直接提取的青蒿酸分子结构完全一样,并且同先前的文献报道十分吻合2223。因此,可以确定我们所得到的这株转基因酵母能够直接合成结构功能上完全正确的青蒿酸。