第二讲一元一次方程应用题行程类专题讲解
【基本关系式】
(1) 行程问题中的三个基本量及其关系:
(2) 基本类型
① 相遇问题:快行距+慢行距=原距
② 追及问题:快行距-慢行距=原距
③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
顺速–逆速 = 2水速;顺速 + 逆速 = 2船速
顺水的路程 = 逆水的路程
注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。
常见的还有:相背而行;环形跑道问题。
一、行程(相遇)问题
A.基础训练
1. 小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?
2. 小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?
3. 王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?
4. 两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?
5. 两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?
6. 甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
7. 甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。
8. AB两地相距900米。甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?
9. 甲乙两地相距640千米。一辆客车和一辆货车同时从甲地出发,同向而行,客车每小时行46千米,货车每小时34千米,客车到达乙地后马上返回与货车在途中相遇,问从出发到相遇一共用了多少时间?
B.提高训练
1. 建朋和建博两人骑自行车同时从相距65千米的两地相向而行,经过两小时相遇,已知建朋比建博每小时多走2.5千米,问建博每小时走多少千米?
2. A、B两地相距360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间?
3. 甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行向风而行多少集4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?
4. 甲、乙两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。
(1)两列火车同时开出,相向而行,多少小时相遇?
(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇?
5. 甲每分钟走70米,乙每分钟走60米,丙每分钟走50米,甲从A地,乙丙从B地同时出发,相向而行,甲在遇到乙2分钟后又遇见丙,求AB两地距离。
二、行程(追击)问题
A.基础训练
1. 步行速度是75米/分,妹妹步行速度是45米/分。在妹妹出发20分钟后,出发去追妹妹。问:多少分钟后能追上?
2. 甲、乙两人从同地出发前往某地。甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?
3. 一列慢车从A地出发,每小时行60千米,慢车开出1小时后,快车也从A地出发,每小时速度为90千米,快车经过几小时可追上慢车?
4. 敌我两军相距25千米,敌军以5千米/时的速度逃跑,我军同时以8千米/时的速度追击,并在相距一千米处发生战斗,问战斗是在开始追击几小时发生的?
5. AB两站相距448千米,一列慢车从A站出发,每小时行驶60千米,一列快车也从A站出发,每小时行驶80千米,要使两车同时到达B站,慢车应先出发几小时?
6. 甲乙两人在400米的环形跑道上练习长袍,他们同时同地出发,甲的速度是6米每秒,乙的速度是4米每秒,多长时间后甲追上乙?
7. 甲乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且先出发2小时, 问摩托车经过多少时间追上自行车?
8. 几名同学约好一起去动物园,到学校集合后,一部分同学以每小时5千米的速度步行,0.5小时后,另一部分同学骑自行车上学,20分钟后,他们同时到达动物园,骑自行车的同学的速度是多少?
9. 某市举行环城自行车赛,最快者在35分钟后遇见最慢者,已知最快者的速度是最慢者的7/5,环城一周是6千米,则最快者和最慢者的速度各是多少?
10. 父子两人晨练,父亲从家到公园跑步需要30分钟,儿子只需20分钟,如果父亲比儿子早出发5分钟,儿子追上父亲需要多少分钟?
B.提高训练
1. 张勇和刘成旭两人练习50米短距离赛跑,张勇每秒钟跑7米,刘成旭每秒钟跑6.5米。
(1)几秒后,张勇在刘成旭前面2米?
(2)如果张勇让刘成旭先跑4米,几秒可追上刘成旭?
2. 一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。问:若已知队伍长320米,则通讯员几分钟返回?‚若已知通讯员用了25分钟,则队伍长为多少米?
3. 一支部队排成1.2千米队行军,在队尾的张明要与在最前面的营长联系,他用6分钟时间追上了营长。为了回到队尾,在追上营长的地方等待了18分钟。如果他从最前头跑步回到队尾,那么用多少时间?
三、行程(行船、飞行)问题
1. 一架飞机飞行在两个城市之间,风速为24千米/时. 顺风飞行需要2小时50分,逆风飞行需要3小时. 求飞机在无风时的速度及两城之间的飞行路程.
2. 一艘轮船航行于两地之间,顺水要用3小时,逆水要用4小时,已知船在静水中的速度是50千米/小时,求水流的速度.
3. 汽船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5小时。已知船在静水的速度为18千米/小时,水流速度为2千米/小时,求甲、乙两地之间的距离?
4. 一只船从甲码头到乙码头是顺流行驶,用了2小时;从乙码头返回到甲码头是逆流行驶,用了2.5小时。如果水流的速度是3千米/小时,求船在静水中的速度?
5. 一船在两码头之间航行,顺水需4小时,逆水4个半小时后还差8公里,水流每小时2公里,求两码头之间的距离?
四、行程(跑道)问题
1. 乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分,乙的速度是甲速度的倍,问(1)经过多少时间后两人首次相遇(2)第二次相遇呢?
2. 一条环形的跑道长800米,甲练习骑自行车平均每分钟行500米,乙练习赛跑,平均每分钟跑200米,两人同时同地出发。
(1)若两人背向而行,则他们经过多少时间首次相遇?
(2)若两人同向而行,则他们经过多少时间首次相遇?
3. 甲乙二人沿400米的圆形跑道跑步,他们从同一地点同时出发,背向而行。当两人第一次相遇后,甲的速度比原来提高2米/秒,乙的速度比原来降低2米/秒,结果两人都用24秒回到原地。求甲原来的速度?
【能力测试】
1. 两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?
2. 一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。
3. 已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?
4. 一架飞机飞行于甲、乙两城之间,顺风时需要5小时30分钟,逆风时需要6小时,若风速是每小时24公里,求两城之间的距离.
5. 一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。问:①若已知队长320米,则通讯员几分钟返回?②若已知通讯员用了25分钟,则队长为多少米?
6. 一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程?
7. 一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。
发布评论