2017年四川省资阳市中考数学真题及答案
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)﹣2的绝对值是( )
A.±2 B.2 C.﹣2 D.
2.(3分)如图所示的立体图形的主视图是( )
A. B. C. D.
3.(3分)下列运算正确的是( )
A.(x+y)2=x2+y2 B.(x2)3=x5
C. D.x6÷x2=x3
4.(3分)如今网络购物已成为一种常见的购物方式,2016年11月11日当天某电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元)( )
A.1.107×1010 B.1.107×1011
C.0.1107×1012 D.1.107×1012
5.(3分)如图,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠DAE=56°,则∠E的度数为( )
A.56° B.36° C.26° D.28°
6.(3分)一组数据5,2,6,9,5,3的众数、中位数、平均数分别是( )
A.5,5,6 B.9,5,5 C.5,5,5 D.2,6,5
7.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°后得到△ADE,则图中阴影部分的面积为( )
A. B. C. D.
8.(3分)若一次函数y=mx+n(m≠0)中的m,n是使等式m=成立的整数,则一次函数y=mx+n(m≠0)的图象一定经过的象限是( )
A.一、三 B.三、四 C.一、二 D.二、四
A.1 B. C.中考时间2017 D.
10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:
①abc<0,
②a<﹣,
③a=﹣k,
④当0<x<1时,ax+b>k,
其中正确结论的个数是( )
A.4 B.3 C.2 D.1
二、填空题(本大题共6小题,每小题3分,共18分,请把答案填在题中的横线上)
11.(3分)使分式有意义的x的取值范围是 .
12.(3分)一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是 .
13.(3分)边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC= 度.
14.(3分)关于x的一元二次方程(a﹣1)x2+(2a+1)x+a=0有两个不相等的实数根,则a的取值范围是 .
15.(3分)如图,点A是函数y1=﹣图象上一点,连接AO交反比例函数y2=(k≠0)的图象于点B,若BO=2AB,则k .
16.(3分)按照如图所示的方法排列黑小正方形地砖,则第14个图案中黑小正方形地砖的块数是 .
三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)
17.(7分)先化简,再求值:(﹣1)÷,其中x=2.
18.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.
(1)求七年级已“建档立卡”的贫困家庭的学生总人数;
(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;
(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
19.(8分)如图,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线于点E.若∠ACD=60°,∠E=30°.
(1)求证:直线DE与半圆相切;
(2)若BE=3,求CE的长.
20.(8分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0,x<0)的图象交于点A(﹣3,1)和点C,与y轴交于点B,△AOB的面积是6.
(1)求一次函数与反比例函数的解析式;
(2)当x<0时,比较y1与y2的大小.
21.(9分)四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载柚子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.
(1)求每辆汽车可装载柠檬或柚子各多少吨?
(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?
22.(9分)如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测得教学楼外墙外点D的仰角为30°,从点C沿坡度为1:的斜坡向上走到点F时,DF正好与水平线CE平行.
(1)求点F到直线CE的距离(结果保留根号);
(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高度(结果精确到0.0l).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)
23.(11分)在△ABC中,AB=AC>BC,D是BC上一点,连接AD,作△ADE,使AD=AE,且∠DAE=∠BAC,过点E作EF∥BC交AB于F,连接FC.
(1)如图1.
①连接BE,求证:△AEB≌△ADC:
②若D是线段BC的中点,且AC=6,BC=4,求CF的长;
(2)如图2,若点D在线段BC的延长线上,且四边形CDEF是矩形,当AC=m,BC=n时,
求CD的长(用含m,n的代数式表示).
发布评论