第一篇:九年级数学《相似三角形复习》评课稿
九年级数学《相似三角形复习》评课稿
九年级数学《相似三角形复习》评课稿
听了吴**老师的《相似三角形复习》这节课,被他精湛的教学艺术所深深吸引。吴老师教学设计非常清晰,各知识点分析到位,重点突出,难点突破,由浅入深,层层递进,是一堂非常不错的复习课。
下面就这节课来谈谈我的看法:
1、知识点回顾
2、设计思路清晰
以拼——折——转这几个富有动态的词语分别设计出不同的具有代表性的题型,层层深入,并用几何画板展现动画效果,不仅激发了学生的兴趣,还培养了学生的空间想象能力,为以后的学习奠定了扎实的基础。
3、注重数学思想的培养
在折一折环节中,折出了数形结合思想。例如题:如图,相似三角形纸片的两直角边BC=6cm,AC=8cm,将直角边BC,使点C落在斜边AB上,折痕为BD,求:CD的长。
引导学生观察在折前后不变的量,和变的量,将数与形结合使答案露出水面,学生求解一点都不困难,达到很好的教学效果。
这是一节不显得枯燥,有声有的复习课。他扎实的基本功和严谨的教学态度都给我留下了深刻的印象,也让本人对自己的课堂教学引起了反思,并为本人以后的课堂教学提供了很多的好思路,感谢他的精彩课堂。
第二篇:相似三角形复习课教案
《相似三角形》复习课教案
城区二中 章松岩
目的:使学生掌握相似三角形的判定和性质和应用,并能灵活运用。重点:相似三角形的判定和性质和应用。难点:相似三角形的灵活运用。教法:三疑三探。教具:多媒体。过程:
课前热身:时间为3分钟
1、根据下列条件能否判定△ABC与△A′B′C′相似?为什么?
(1)∠A=120°,AB=7,AC=14
∠A′=120°,A′B′=3,A′C′=6(2)AB=4,BC=6,AC=8 A′B′=12,B′C′=18,A′C′=21
(3)∠A=70°,∠B=48°, ∠A′=70°, ∠C′=62°
2、已知△ABC∽△ A′B′C′,其相似比为,则△ABC 与△A′B′C′的周长比为__对应高的比为__对应中线的比为__对应角平分线的比为__面积比为__。提问学生后教师简单总结,并让学生说说本单元的复习任务是什么? 相似三角形的判定
(1)两边对应成比例且夹角相等,两个三角形相似。(2)三边对应成比例,两个三角形相似。(3)两角对应相等,两个三角形相似。相似三角形的性质
(1)相似三角形对应边成比例,对应角相等。(2)相似三角形的周长比等于相似比。
(3)相似三角形的面积比等于相似比的平方。
(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。要求学生读几遍。介绍相似三角形的应用: 相似三角形的应用:
1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等;
3、利用三角形相似,可以解决一些不能直接测量的物体的长度。如求河的宽度、求建筑物的高度等。课堂抢答:
1、D是△ABC的边AB上的点, 请你添加一个条件,使△ACD与△ABC相似, 这个条件是()
2、如果一个三角形三边长分别为5、12、13,与其相似的三角形最大边长是39,则该三角形
最短的边长为()
3、如图,在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于点F,BE:AB=2:3,则△BEF与△CDF的周长比为();若△BEF的面积为8平方厘米,则△CDF的面积为()
4、如图,铁道口的栏杆的短臂长1米,长臂长16米,当短臂端点下降0.8米时,长臂端点升高()(杆的宽度忽略不计)
5、如图,身高为1.6m的某同学想测量一棵大树的高度,她沿树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树高为()
A、4.8m
B、6.4m
C、8m
D、10m 竞赛角
如图,CD是Rt△ABC斜边上的高,E为AC的中点,ED交CB的延长线于F。求证:BD·CF=CD·DF 证明:∵CD⊥AB,E为AC的中点
∴ DE=AE
∴∠EDA=∠A
∵ ∠EDA=∠FDB
∴∠A=∠FDB
∵∠ACB= Rt ∠
∴ ∠A=∠FCD
∴ ∠FDB=∠FCD
∵ △FDB∽△FCD
∴ BD:CD=DF:CF
∴ BD·CF=CD·DF 中考链接:
在∆ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB边向B点以2cm/秒的速度移动,点Q从点B开始沿BC向点C以4cm/秒的速度移动,如果P、Q分别从A、B同时出发,经几秒钟∆BPQ与∆BAC相似?
大胆质疑:
通过本节课的学习同学们还有什么疑问或新的发现请大胆提出来? 教师预设:
某社区拟筹资金2000元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图)他们想在△AMD和△BMC地带种植单价为10元 /米2的太阳花,当△AMD地带种满花后,已经花了500元,请你算一下,若继续在△BMC地带种植同样的太阳花,资金是否够用?并说明理由。
小结:
通这一节的复习之后你有哪些收获?
(1)掌握相似三角形的判定方法及性质;
(2)能灵活运用相似三角形的判定方法及性质进行计算或证明;(3)利用相似解决一些实际问题
(4)分类讨论思想: 遇到没有明确指明对应关系的三角形相似时,要注意考虑对位相似和错位相似两种情况,采取分类讨论的方法解决问题.作业:
1、必做题:学习指导第82页2,3,5题。
2、选做题: 板书设计: 教后记:
相似三角形复习课教案
城区二中
章松岩
2013年1月8日
教后反思
结合上课时的感受及课后评课,我对这节课作出如下反思: 成功地方:
1.能科学运用三疑三探模式上课。
2.能有效开展小组活动。充分发挥小组协作功能。
3.注重学生动口动手能力的培养,教师只起辅助引导作用。不足地方:
1.课前可创设问题情境,结合日常生活实际设计一个问题。2.课前热身习题可设计成学案的形式。3.学生评价素质有待于进一步提高。
4.部分习题处理过快影响了中差生的学习。5.中招链接题因为时间关系为处理。6.竟赛角题目设计过难。7.教师未使用普通话。整改措施:
1.复习期间认真备好复习课。2.注重发挥教研组集体协作功能。
3.注重数学思想方法的教学,注重讲题的效果,注重总结归纳解题方法。4.精选习题,不搞题海战术。5.注重批改,反馈,考后总结。6.注意培优补差,努力降低过差率。
第三篇:九年级数学《相似三角形》说课稿
【小编寄语】查字典数学网小编给大家整理了九年级数学《相似三角形》说课稿,希望能给大家带来帮助!
相似三角形说课稿
今天,我的说课将分三大部分进行:
一、说教材;
二、说教学策略;
三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;教师寄语大全
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
发布评论