2019年甘肃省定西市中考数学试题及参考答案与解析
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.
1.下列四个几何体中,是三棱柱的为(  )
A.    B.    C.    D.
2.如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是(  )
A.0    B.1    C.2    D.3
3.下列整数中,与最接近的整数是(  )
A.3    B.4    C.5    D.6
4.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为(  )
A.7×10﹣7    B.0.7×10﹣8    C.7×10﹣8    D.7×10﹣9
5.如图,将图形用放大镜放大,应该属于(  )
A.平移变换    B.相似变换    C.旋转变换    D.对称变换
6.如图,足球图片正中的黑正五边形的内角和是(  )
A.180°    面积最大的省是哪个省B.360°    C.540°    D.720°
7.不等式2x+9≥3(x+2)的解集是(  )
A.x≤3    B.x≤﹣3    C.x≥3    D.x≥﹣3
8.下面的计算过程中,从哪一步开始出现错误(  )
A.①    B.②    C.③    D.
9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是(  )
A.22.5°    B.30°    C.45°    D.60°
10.如图,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图所示,则AD边的长为(  )
A.3    B.4    C.5    D.6
二、填空题:本大题共8小题,每小题4分,共32分.
11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点     
12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:
实验者
德•摩根
蒲丰
费勒
皮尔逊
罗曼诺夫斯基
掷币次数
6140
4040
10000
36000
80640
出现“正面朝上”的次数
3109
2048
4979
18031
39699
频率
0.506
0.507
0.498
0.501
0.492
请根据以上数据,估计硬币出现“正面朝上”的概率为      (精确到0.1).
13.因式分解:xy2﹣4x=       
14.关于x的一元二次方程x2+x+1=0有两个相等的实数根,则m的取值为       
15.将二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k的形式为         
16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于         
17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=       
18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是     
三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明,证明过程或演算步骤
19.(6分)计算:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π0
20.(6分)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?
21.(8分)已知:在△ABC中,AB=AC.
(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)
(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则SO     
22.(8分)如图是图是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).
23.(10分)2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.
(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?
(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.
四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明,证明过程或演算步骤.
24.(8分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理数据:
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
七年级
0
1
0
a
7
1
八年级
1
0
0
7
b
2
分析数据:
平均数
众数
中位数
七年级
78
75
c
八年级
78
d
80.5
应用数据:
(1)由上表填空:a=     ,b=     ,c=     ,d=     
(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?
(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.
25.(10分)如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点