新人教版八年级数学(下册)期末试卷(附参考答案)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.将直线向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )
A. B. C. D.
2.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )
A.经过第一、二、四象限 B.与x轴交于(1,0)
C.与y轴交于(0,1) D.y随x的增大而减小
3.已知x+y=﹣5,xy=3,则x2+y2=( )
A.25 B.﹣25 C.19 D.﹣19初二数学期末试卷
4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=( )
A.105° B.115° C.125° D.135°
5.已知一个多边形的内角和为1080°,则这个多边形是( )
A.九边形 B.八边形 C.七边形 D.六边形
6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是( )
A.x=2 B.x=0 C.x=﹣1 D.x=﹣3
7.在平面直角坐标中,点M(-2,3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )
A.90° B.60° C.45° D.30°
A.2 B.3.5 C.7 D.14
10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )
A. B.1 C. D.2
二、填空题(本大题共6小题,每小题3分,共18分)
1.若,则x=__________
2.函数中自变量x的取值范围是__________.
3.4的平方根是 .
4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.
5.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.
6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
三、解答题(本大题共6小题,共72分)
1.解方程:
(1) (2)
2.先化简,再求值:,其中x满足.
3.已知关于x的一元二次方程.
(1)求证:方程有两个不相等的实数根;
(2)如果方程的两实根为,,且,求m的值.
4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
发布评论