数据”为电力企业带来什么
以更准确的分析预测,为智能电网与新能源发展提供决策依据
“大数据”这个词是最近的新热点,《纽约时报》甚至宣称“大数据时代降临了”,随着这个词的频频曝光,它的商业价值也逐渐凸显,“大数据”已然成为众多世界500强企业追捧的对象,意昂(E.ON)等多家超大型国际电力能源集团已宣布牵手“大数据”。那么,“大数据”究竟会给电力企业的未来发展带来什么启示呢?
“大数据”的核心:更准确地预测
“大数据”源自英文bigdata,对这个概念的解释千差万别,美国学者舍恩伯格在他的专著《大数据时代》中解释说:“大数据,就是我们可以在更大规模的数据上,做到更多我们无法在小规模数据基础上完成的事情。”
他认为,“大数据”的核心就是对庞杂的超大规模数据资料进行分析,从而可以更准确地预测,这必然引发商业变革。以欧洲快销时尚品牌ZARA为例,该公司通过对消费者登录网店的数据进行分析,出最受欢迎的产品,作为实体店的推荐参考,果然效果很好。并在实体店及网店
中不停地收集消费者反馈:“我喜欢这个图案”、“我讨厌这个扣子”等,所有消息都通过销售经理反馈给数据处理中心,最终各方信息都将被分类处理,成为设计、生产、销售的指引。ZARA借此将销售收入提高了10%。
舍恩伯格在《大数据时代》一书中提出了一个非常具有颠覆性的观点:通过对庞大数据分析知道“是什么”就够了,不必再去追问“为什么”,就好像ZARA只需通过“大数据”分析了解什么款式最受欢迎,不必再花精力去研究消费者为什么喜欢。这个观点对于企业管理者来说,尤为重要。
上海中国移动网上营业厅需要专业化的数据处理机构
意昂集团(E.ON),欧洲最大的电力集团公司之一,兼营石油、贸易、运输等业务,2012年在世界500强榜单上排名第16位,英、德等30多个国家的电网与发电企业都属于该集团旗下资产,用户数量超过2600万人。今年4月,该集团宣布携手瑞典爱立信(Er-icsson)公司探索“大数据”。
爱立信将向意昂集团出售相应的电网应用设备和软件,用来将意昂旗下电网的数据传输量提
高3000%,可见这家电力企业在未来对数据的依赖。爱立信将帮助意昂对这些数据进行管理和分析,从而为企业经营服务。这次“大数据”合作主要集中在瑞典电网,意昂在瑞典大约拥有60万块智能电表。
像意昂这样的大型综合性集团,为什么一定与他人联手而不是让自己的办公室来分析数据呢?
IBM公司在美国德克萨斯州有个智能电网项目,将拥有320万块智能电表,“原来都是每个月抄一次表,现在智能电表每15分钟就向IBM公司发送一次用户的用电数据。320万块表,15分钟抄一次,一个月下来是多么大的一堆数据?没有专业化的‘大数据’分析肯定不行。”项目负责人说。这或许就是意昂牵手爱立信做“大数据”的原因。
与此同时,电力设备制造商西门子公司也宣布携手数据分析公司天睿(Teradata)进行“大数据营销”,将电力企业设定为目标客户,提供从智能电表到电网运行系统的设备制造与数据分析服务。此前,天睿公司已经和美国南加州爱迪生电力公司等电力企业建立和合作,对停电、电力供应、电力需求、天气对电力供需的影响等数据进行精确地分析,从而为电网安全运行提供更可靠的参考依据。
届时,“大数据”所包含的信息将会给发电和电网企业做出更好的预测,比如气温每升高一度对电力需求的影响、用电高峰时间可以精准到分钟等具体数据,都可以通过“大数据”分析来获得。
为电网规划和新能源探路
《大数据时代》的作者舍恩伯格说,可以抽象地认为,智能电网就是“大数据”这个概念在电力行业中的应用,就是通过网络将用户的用电习惯等信息传回给电网企业的信息中心,进行分析处理,并对电网规划、建设、服务等提供更可靠的依据。
日前,美国加州大学洛杉矶分校的研究者就根据“大数据”理论设计了一款“电力地图”,将人口调查信息、电力企业提供的用户实时用电信息和地理、气象等信息全部集合在一起,制作了一款加州地图。该图以街区为单位,展示每个街区在当下时刻的用电量,甚至还可以将这个街区的用电量与该街区人的平均收入和建筑物类型等相比照,从而得出更为准确的社会各体的用电习惯信息。
这个“大数据”地图也为城市和电网规划提供了直观有效的负荷数预测依据,也可以按照图中显示的停电频率较高、过载较为严重的街区进行电网设施的优先改造。
同时,对于风能、太阳能等具有间歇性的新能源,通过“大数据”分析进行有效地调节,也可以使新能源更好地与传统的水火电进行互补,更为灵活地出力。
本报记者 关飞
《南方电网报》2013.4.27
电力行业如何应用大数据
2013-07-01  来源:人民邮电报  作者:吴学忠
大数据不是ICT行业的专利。目前,金融、广电等传统行业都在积极借助大数据的力量,帮助企业实现转型。在电力行业,大数据已经被视作企业战略层面的重要议题:国家电网就在北京亦庄、上海、陕西建立了三个大数据中心,其中北京亦庄大数据中心已安装超过10200个传感器,每个月可节约的能耗价值大概为30万元。那么,电力行业如何应用大数据?在电力行业面临的挑战中,电信业能到哪些共性,电信业又有怎样的机遇?电力行业的应用策略中有哪些值得电信业借鉴?请关注本版报道。
大数据在公共管理、零售、互联网、电信、金融等众多行业快速推广,市场规模迅速扩大,2012年国内大数据市场规模已达4.5亿元。IDC预测,2016年中国大数据市场规模将达6.17亿美元,而全球规模将达238亿美元。大数据已经渗透到当今的每个行业,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。大数据超过了传统数据库系统的处理能力,为了获得数据中的价值,必须选择新的方式进行处理。电力大数据是大数据理念、技术和方法在电力行业的实践,是大数据应用的重点领域之一。
对内:优化管理模式
电力行业数据量大、类型多、价值高,对于电力企业盈利与控制水平的提升有很高的价值。有电网专家分析称,每当数据利用率调高10%,便可使电网提高20%~49%的利润。和电信行业一样,电力行业对大数据的使用也分为内部应用和外部应用。
内部应用指运用大数据优化电力企业管理模式,提升电力企业经营管理水平,主要包括以下几个方面。
——支持基建决策
大数据技术有助于电力企业基础设施选址、建设的决策。例如丹麦风电公司VESTAS计划将全球天气系统数据与公司发电机数据结合,利用气温、气压、空气湿度、空气沉淀物、风向、风速等数据以及公司历史数据,通过使用超级计算机及大数据模型解决方案,来支持其风力发电机的选址,以充分利用风速、风力、气流等因素达到最大发电量,并减少能源成本。此外,VESTAS还将添加全球森林砍伐追踪图、卫星图像、地理数据以及月相与潮汐数据,以便更好地支持基础建设的决策。
——升级客户分析
一方面,通过使用电力企业庞大的历史销量数据,进行用户用电行为分析和用户市场细分,使管理者能有针对性地优化营销组织,改善服务模式。另一方面,通过与外界数据的交换,挖掘用户用电与电价、天气、交通等因素所隐藏的关联关系,完善用户用电需求预测模型,进而为各级决策者提供多维、直观、全面、深入的预测数据,主动把握市场动态。
——提高智能控制
大数据技术将加速电力企业智能化控制的步伐,促进智能电网的发展。例如,通过为电力基础设施布置传感器,动态监控设施运行状况,并基于大数据分析挖掘理念和可视化展现技术手段,采用集成了在线检测、视频监控、应急指挥、检修查询等功能的“智能在线监控与可视化调度管理系统”,有效改变运维方式,从萌芽阶段消除部分运维故障,实现运维智能化。
——加强协同管理
整合电力行业生产、运营、销售、管理的数据,实现电力发电、输电、变电、配电、用电、调度全环节数据共享,以用电需求预测为驱动优化资源配置,协调电力生产、运维、销售的管理,提升生产效率和资源利用率。此外,电力企业各部门数据的集成将优化内部信息沟通,
使财务、人事等工作的开展更顺畅,有助于企业实行精细化运营管理,提高集团管控水平。
对外:丰富增值业务
外部应用指利用电力行业大数据可获得的社会效益,主要包括以下方面。