u检验、t检验、F检验、X2检验
常用显著性检验
1.t检验
2.t'检验
应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3.U检验
标准差怎么算应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。
4.方差分析
用于正态分布、方差齐性的多组间计量比较。常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。
5.X2检验
是计数资料主要的显著性检验方法。用于两个或多个百分比(率)的比较。常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。
6.零反应检验
用于计数资料。是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。属于直接概率计算法。
7.符号检验、秩和检验和Ridit检验
三者均属非参数统计方法,共同特点是简便、快捷、实用。可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。其主要缺点是容易丢失数据中包含的信息。所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。
8.Hotelling检验
用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
计量经济学检验方法讨论
计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。
在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。那么如果两个东西之间没有什么因果联系,那么我们寻的原因就不对。那么这样的结果是没有什么意义的,或者说是意义不大的。那么检验对于我们确认结果非常的重要,也是评价我们的结果是否拥有价值的关键因素。所以要做统计检验。
t检验,t检验主要是检验单个ols估计值或者说是参数估计值的显著性,什么是显著性?也就是给定一个容忍程度,一个我们可以犯错误的限度,错误分为两类:1、本来是错的但是我
们认为是对的。2、本来是对的我们认为是错的。统计的检验主要是针对第一种错误而言的。一般的计量经济学中的这个容忍程度是5%,也就是说可以容忍我们范第一类错误的概率是5%。这样说不准确,但是比较好理解。t-stastic是类似标准正态化的正态分布两一样,也就是估计值减去假设值除以估计值得标准差,一般假设值是0,这一点不难理解,如果是0 ,那么也就意味着没有因果关系。这个t-static在经典假设之下服从t分布。t分布一般是和正态分布差不多,尤其是当样本的量足够大的时候,一般的经验认为在样本数量大于120的时候,就可以看成是正态分布的。
F-statistc:F检验是属于联合检验比较重要的一种,主要的目的是用于对于一系列的原因的是否会产生结果这样一个命题做出的检验。F统计量主要的产生来源是SSR\SST\SSE三个量。但是这个检验有一个缺点是必须在经典假设之下才能有效。
LM检验:这个检验的性质和F检验的性质是一样的,都是检验联合显著性的,不同的是F统计量符合F分布,但是LM统计量服从卡方分布。卡方分布是正态分布的变量的平方和,而F分布是卡方分布的商,并且分子和分布必须独立,这就是为什么F检验适用范围受限的原因。LM=n*SSR、或者是LM=n-SSR。
至于其他的White检验、Brusch-pagan检验(异方差的检验方法)、还有序列相关的t检验、DW检验基本原来是相同的。
关于异方差检验、序列相关的检验其中存在不同的地方,但是思想基本是相同的。
关于异方差检验的讨论:
1、Brusch-pagan检验:这个检验的思路比较简单,主要是要研究残查和X之间的关系,给定这样的一个方程:u=b0+b1*x1+……+bn*xn+u'的回归,其中进行F检验和LM检验。如果检验通过那么不存在异方差,如果不通过那么存在异方差。
2、White检验:这个检验也是对异方差的检验,但是这个检验不同的是不仅对于X的一次方进行回归,而且考虑到残查和x的平方还有Xi*Xj之间的关系。给定如下方程:u=b0+b1*y+b2*y^2+u'。也是用F和LM联合检验来检验显著性。如果通过那么不存在异方差,否则存在。
序列相关的检验方法的讨论:
对于时间序列的问需要知道一个东西,也就是一介自回归过程,也就是一般在教科书中说到的:AR(1)过程,其中的道理主要是说在当期的变量主要是取决于过去一个时期的变量和一个随机误差项。表示如下:Ut=p*U(t-1)+et。在这里我要说到几个概念问题,I(1)(一阶积整)、I(0)(零阶积整)。其中的一介自回归过程AR(1)就属于零阶积整过程,而一阶积整过程实际上是随机游动和飘移的随机游动过程。随机游动过程:Ut=U(t-1)+et。也就是在AR(1)的过程之下,其中的P是等于1的。飘移的随机游动过程:Ut=a+U(t-1)+et。其中随机游动过程和AR(1)过程中的不同点在于一个弱相依性的强弱问题,实际上我们在时间序列问题中,我们可以认为任何一个过程是弱相依的,但是问题的关键是我们不知道到底有多弱?或者更加直观地说,我们想知道P到底是多大,如果P是0.9或者是一个比较接近于1得数,那么可能我们可以认为这个时间序列有高度持久性,这个概念表示当期的变量却绝于一个很早的时期的变量,比如一阶积整过程,实际上et是一个独立统分布的变量,而且条件数学期望等于0,没有异方差性。那么实际上这个序列的数学期望是和期数没有什么关系的。那么也就意味着从第0期开始,U的数学期望值就是和很久以后的U的数学期望值一样的。但是方差就不同了,方差随着时间的增加不断扩大。我们知道了,这种不同的概念就可以讨论在一阶自回归的条件之下的检验问题,但是我们说一介自回归的过程是参差序列的特征而已,其他的变量的特征问题我们不谈。
在讨论检验的问题以前,我有必要交待一下时间序列在ols估计的时候我们应该注意什么。实际上解决序列自相关问题最主要的问题就是一个差分的方法。因为如果是长期持久的序列或者是不是长期持久的序列,那么一定的差分就可以解除这种问题。
1、t检验。如果我们知道这个变量是一个一介自回归的过程,如果我们知道自回归过程是AR(1)的。那么我们就可以这样作,首先我们做OLS估计,得到的参差序列我们认为是一阶自相关的。那么为了验证这种情况,那么我们可以做Ut和U(t-1)的回归,当然这里可以包含一个截距项。那么我们验证其中的参数的估计是不是显著的,就用t检验。
t检验与F检验有什么区别
1.检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,
1,两个同质受试对象分别接受两种不同的处理;
2,同一受试对象接受两种不同的处理;
3,同一受试对象处理前后。
F检验又叫方差齐性检验。在两样本t检验中要用到F检验。从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。其中要判断两总体方差是否相等,就可以用F检验。
2.t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,
第一类是针对单组设计定量资料的;
第二类是针对配对设计定量资料的;
第三类则是针对成组设计定量资料的。
后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。
若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;
若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。
之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。 值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。
t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。简单、熟悉加上外界的要求,促成了t检验的流行。但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。将这些问题归类,可大致概括为以下两种情况:
不考虑t检验的应用前提,对两组的比较一律用t检验;
将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。
以上两种情况,均不同程度地增加了得出错误结论的风险。而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。
u检验和t检验区别与联系
u检验和t检验可用于样本均数与总体均数的比较以及两样本均数的比较。理论上要求样本来自正态分布总体。但在实用时,只要样本例数n较大,或n小但总体标准差σ已知时,就可应用u检验;n小且总体标准差σ未知时,可应用t检验,但要求样本来自正态分布总体。两样本均数比较时还要求两总体方差相等。
一、样本均数与总体均数比较
比较的目的是推断样本所代表的未知总体均数μ与已知总体均数μ0有无差别。通常把理论值
、标准值或经大量调查所得的稳定值作为μ0.根据样本例数n大小和总体标准差σ是否已知选用u检验或t 检验。
(一)u检验用于σ已知或σ未知但n足够大[用样本标准差s作为σ的估计值,代入式(19.6)]时。
以算得的统计量u,按表19-3所示关系作判断。
表19-3 u值、P值与统计结论
α | |t|值 | P值 | 统计结论 |
0.05双侧 单侧 | <1.96 <1.645 | >0.05 | 不拒绝H0,差别无统计学意义 |
0.05双侧 单侧 | ≥1.96 ≥1.645 | ≤0.05 | 拒绝H0,接受H1,差别有统计学意义 |
0.01双侧 单侧 | ≥2.58 ≥2.33 | ≤0.01 | 拒绝H0,接受H1,差别有高度统计学意义 |
发布评论