四川高考数学考点
篇一:2015四川高考数学备考:近五年高频考点
四川高考文科数学近五年高频考点1、直线与圆相交的性质2、概率的意义3、与二面角有关的立体几何综合题4、椭圆的应用5、相互独立事件的概率乘法公式6、古典概型及其概率计算公式四川高考理科数学近五年高频考点1、不等式的实际应用2、利用导数研究函数的极值
3、三角函数的最值4、数列与函数的综合5、正弦函数的单调性6、利用导数求闭区间上函数的最值
篇二:2015四川高考理科数学考试说明
数
Ⅰ.考试性质四川高考是全国几卷
普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,
高考应具有较高的信度、效度,必要的区分度和适当的难度.
Ⅱ.命题原则及指导思想
2015年普通高等学校招生全国统一考试(四川卷)数学学科的命题,将按照“有利于科学选拔人才,有利于促进学生健康发展,有利于维护社会公平”的原则,遵循“注重能力考查,体现课改理念,力求平稳推进”的指导思想,依据《2015年普通高等学校招生全国统一考试大纲(课程标准实验版)》和《2015年普通高等学校招生全国统一考试(四川卷)考试说明》规定的范围和要求命制试题.命题坚持以能力测试为主导,在考查考生基本知识、基本能力的同时,注重考查考生综合运用所学知识解决实际问题的能力和科学探究能力,突出考查学科意识、学科思维、科学素质和人文素养,力求做到科学、准确、公平、规范.
Ⅲ.考试内容
一、考核目标与考查要求
数学科高考注重考查中学数学的基础知识、基本技能、基本思想方法,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识、创新意识.具
体考试内容根据教育部颁布的《普通高中数学课程标准(实验)》、教育部考试中心颁布的《普通高等学校招生全国统一考试大纲(理科·课程标准实验)》确定.
数学学科的系统性和严密性决定了数学知识之间内在联系的深刻性,包括各部分知识的纵向联系和横向联系.数学学科的考试要从本质上体现这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.
数学学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力体现对考生综合数学素养和数学学习现状及潜能的考查.
—2—
2015四川高考理科数学考试说明
1.数学知识
知识是指《课程标准》所规定的必修课程、选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.
各部分知识的整体要求参照《课程标准》相应模块的有关说明.
对知识的要求由低到高分为了解、理解、掌握三个层次(分别用A、B、C表示),且高一级的层次要求包含低一级的层次要求.
(1)了解(A):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别、认识它.
“了解”层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.
(2)理解(B):要求对所列知识内容有较深刻的理性的认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判断、讨论,具备利用所学知识解决简单问题的能力.
“理解”层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.
(3)掌握(C):要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.
“掌握”层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
对数学基础知识的考查既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.考查应注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度设计问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.
2.数学能力
能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力及应用意识和创新意识.
(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.
空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给的图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变
—3—
换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.
(2)抽象概括能力:抽象是指舍弃事物非本质属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,概括必须在抽象的基础上得出某种观点或某个结论.
抽象概括能力要求在对具体的、生动的实例进行抽象概括的过程中,能够发现研究对象的本质,从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或作出新的判断.
(3)推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性的初步的推理能力.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.
中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.
(4)运算求解能力:会根据法则、公式进行正确的运算、变形和数据处理,能根据问题的条件寻与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.
运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估算和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.
发布评论