植物激素有哪些种类?
一、生长素:代号为IAA。
生长素作为最早被发现的植物激素,是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,包括吲哚乙酸(IAA)、4-氯-IAA、5-羟-IAA、萘乙酸等。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究;后来达尔文父子对虉草胚芽鞘向光性进行了研究。1928年温特首次分离出这种引起胚芽鞘弯曲的化学信使物质,命名为生长素。1934年,凯格等确定它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。
生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。植物体内的生长素是由氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由氨酸先脱羧成为胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是氨酸通过吲哚乙腈转变为吲哚乙酸。
在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,
与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。
生长素有多方面的生理效应,这与其浓度有关。生长素的生理效应表现在两个层次上。
在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。
在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。
生长素具体的生理效应表现为:
王梦秋鹿晗
第一、 促进生长,生长素在较低的浓度下可促进生长,而高浓度时则抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。另外,不同器官对生长素的敏感性不同。
第二、 促进插条不定根的形成,用生长素类物质促进插条形成不定根的方法已在苗木的无性繁殖上广泛应用。
第三、 对养分的调运作用。生长素具有很强的吸引与调运养分的效应,利用这一特性,用生长素处理,可促使子房及其周围组织膨大而获得无子果实。
第四、 生长素的其他效应。例如促进菠萝开花、引起顶端优势(即顶芽对侧芽生长的抑制)、诱导雌花分化(但效果不如乙烯)、促进形成层细胞向木质部细胞分化、促进光合产物的运输、叶片的扩大和气孔的开放等。此外,生长素还可抑制花朵脱落、叶片老化和块根形成等。
二、赤霉素:代号为GA。
赤霉素(gibberellin)是一类主要促进节间生长的植物激素,因发现其作用及分离提纯时所用
的材料来自赤霉菌而得名。
赤霉菌是水稻恶苗病的病原菌,感病植株的高生长速率远远超过无病植株。1926年日本黑泽英一用赤霉菌培养基的无细胞滤液处理无病水稻,产生了与染病植株相同的徒长现象,这提示赤霉菌中有促进水稻生长的物质。1938年日本薮田贞治郎和住木谕介从赤霉菌培养基的滤液中分离出这种活性物质,并鉴定了它的化学结构。命名为赤霉酸。1956年C.A.韦斯特和B.O.菲尼分别证明在高等植物中普遍存在着一些类似赤霉酸的物质。到目前为止共发现一百二十多种赤霉素,一般分为自由态及结合态两类,统称赤霉素。是植物激素种类最多的一种激素。
赤霉素都含有(-)-赤霉素烷骨架,它的化学结构比较复杂,是双萜化合物。在高等植物中赤霉素的最近前体一般认为是贝壳杉烯。各种不同的赤霉素之间的差别在于双键、羟基的数目和位置。自由态赤霉素是具 19C或20C的一、二或三羧酸。结合态赤霉素多为萄糖苷或葡糖基酯,易溶于水。
赤霉素可以用甲醇提取。不同的赤霉素可以用各种谱分析技术分开。提纯的赤霉素经稀释后处理矮生植物,如矮生玉米,观察其促进高生长的效应,可鉴定其生物活性。不同的
赤霉素生物活性不同,赤霉酸(GA3)的活性最高。活性高的化合物必须有一个赤霉环系统(环ABCD),在C-7上有羧基,在A环上有一个内酯环。植物各部分的赤霉素含量不同,种子里最丰富,特别是在成熟期。
赤霉素应用于农业生产,在某些方面有较好效果。例如提高无籽葡萄产量,打破马铃薯休眠;在酿造啤酒时,用GA3来促进制备麦芽糖用的大麦种子的萌发;当晚稻遇阴雨低温而抽穗迟缓时,用赤霉素处理能促进抽穗;或在杂交水稻制种中调节花期以使父母本花期相遇。关于赤霉素的作用机理,研究得较深入的是它对去胚大麦种子中淀粉水解的诱发。用赤霉素处理灭菌的去胚大麦种子,发现GA3显著促进其糊粉层中α-淀粉酶的新合成,从而引起淀粉的水解。在完整大麦种子发芽时,胚含有赤霉素,分泌到糊粉层去。此外,GA3还刺激糊粉层细胞合成蛋白酶,促进核糖核酸酶及葡聚糖酶的分泌。
赵文卓个人资料赤霉素的生理效应为:
第一、促进茎的伸长生长。这主要是能促进细胞的伸长。用赤霉素处理,能显著促进植株茎的伸长生长,特别是对矮生突变品种的效果特别明显;还能促进节间的伸长。不存在超最适浓度的抑制作用,即使赤霉素浓度很高,仍可表现出最大的促进效应,这与生长素促进
植物生长具有最适浓度的情况显著不同。不同植物品种对赤霉素的反应有很大的差异。在蔬菜(芹菜、莴苣、韭菜)、牧草、茶叶和苎麻等作物上使用可获得高产。
第二、 诱导开花。某些高等植物花芽的分化是受日照长度和温度影响的。若对这些未经春化的植物施用赤霉素,则不经低温过程也能诱导开花,且效果很明显。此外,赤霉素也能代替长日照诱导某些长日照植物开花,但赤霉素对短日植物的花芽分化无促进作用。对花芽已经分化的植物,赤霉素对其花的开放具有显著的促进效应。如赤霉素能促进甜叶菊、铁树及柏科、衫科植物的开花。
第三、打破休眠。对于需光和需低温才能萌发的种子,如莴苣、烟草、紫苏、李和苹果等的种子,赤霉素可代替光照和低温打破休眠。
第四、 促进雄花分化。对于雌雄异花的植物,用赤霉素处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用赤霉素处理,也会开出雄花。赤霉素在这方面的效应与生长素和乙烯相反。
第五、其他生理效应。赤霉素还可以加强生长素对养分的动员效应,促进某些植物坐果和
单性结实、延缓叶片衰老等。此外,赤霉素也可以促进细胞的分裂和分化,赤霉素对不定根的形成起抑制作用,这与生长素相反。
柳岩整容前三、细胞分裂素:其代号为CTK。
细胞分裂素是一类具有腺嘌呤环结构的植物激素。其共同特点是在腺嘌呤环的第6位置上有特定的取代物。它们的生理功能突出地表现在促进细胞分裂和诱导芽形成。
1948年美国斯科格和中国崔澂在烟草组织培养中发现腺嘌呤能诱导烟草髓组织分化出芽。1955年米勒等以酵母脱氧核糖核酸的降解物和鲱精子的脱氧核糖核酸中分离纯化得到促进细胞分裂的物质,定名为激动素(KT),其化学结构为6-呋喃甲基腺嘌呤,又称糠基腺嘌呤。1963年莱瑟姆从受精11~16天的玉米嫩籽中分离出第一种存在于高等植物中的天然细胞分裂素,定名为玉米素(Z)。目前已从高等植物中得到20几种腺嘌呤衍生物。如二氢玉米素、玉米素核苷(ZR)和异戊烯基腺嘌呤。近代人工合成了多种类似物质,如6-苄基腺嘌呤(BA)、四氢吡喃苄基腺嘌呤(PBA)等。它们通称为细胞分裂素(CTK)。
根部分生组织(根尖)合成细胞分裂素最活跃,通过木质部的长距离运输从根到茎。幼叶、
芽、幼果和正在发育的种子中也能形成细胞分裂素,玉米素最早就是从未成熟的玉米籽中获得的。细胞分裂素可通过转移核糖核酸(tRNA)的裂解产生,也可以由甲羟戊酸盐和腺嘌呤为前体合成。
陈籽熹细胞分裂素有多种生理效应。其生理效应表现为:
第一、 促进细胞分裂,细胞分裂素的主要生理功能就是促进细胞的分裂。生长素、赤霉素和细胞分裂素都有促进细胞分裂的效应,但他们各自所起的作用不同。生长素只促进核的分裂,而与细胞质的分裂无关。而细胞分裂素主要是对细胞质的分裂起作用。
第二、 促进芽的分化。促进芽的分化是细胞分裂素重要的生理效应之一,有些离体叶细胞分裂素处理后主脉基部和叶缘都能产生芽。
第三、 促进细胞扩大。细胞分裂素可促进一些双子叶植物如菜豆、萝卜的子叶或叶圆片扩大,这种扩大主要是因为促进了细胞的横向增粗。
第四、 促进侧芽发育,消除顶端优势。细胞能解除由生长素所引起的顶端优势,促进侧芽生长发育。如豌豆苗若以细胞分裂素溶液滴加于叶腋部位,腋芽则可生长发育。
第五、 延缓叶片衰老。如果在离体叶片上局部涂以细胞分裂素,则叶片其余部位变黄衰老时,涂抹激动素的部位仍保持鲜绿。由于细胞分裂素有保绿及延缓衰老等作用,故可用来处理水果和鲜花等以保鲜、保绿,防止落果。例如用细胞分裂素处理柑橘幼果,可显著防止落果,而且果梗加粗,果实浓绿,果个也比对照显著增大。
新手如何挑选基金第六、 打破种子休眠。需光种子,如莴苣和烟草等在黑暗中不能萌发,用细胞分裂素则可代替光照打破这类种子的休眠,促进其萌发。
四、脱落酸:代号为ABA。
在本世纪50年代,人们已注意研究抑制生长的物质对脱落、休眠及萌发的影响,认为酚类化合物是植物体内主要的生长抑制物质。60年代初在生长抑制物质的研究方面,取得了突破性的进展。1963年,美国的Addicott等在研究棉花蕾铃脱落时,发现一种能引起脱落的活性强的化合物,命名为脱落素(abscisin)。同一年,英国的Wareing等研究引起桦树、槭树休眠的化合物,从这些树的叶子中分离出一种能诱导休眠的活性物质,命名为休眠素(dormin)。1964年,证明脱落素和休眠素是同一种化合物,1965年,其化学结构式被确定。1967年在第六次国际植物生长物质会议上,把这种化合物统一命名为脱落酸(abscisic
acid,简称ABA)。
脱落酸在衰老的叶片组织、成熟的果实、种子及茎、根部等许多部位形成。水分亏缺可以促进脱落酸形成。脱落酸在植物体内才再分配速度很快,在韧皮部和木质部液流中存在。合成脱落酸的前体是甲瓦龙酸,在它生成法尼基焦磷酸后有两条去路。一是真菌中常见的C15直接途径。一是高等植物中的C40间接途径。后者先形成类胡萝卜素(紫黄质),经光或生物氧化而裂解为C15的黄氧化素,再转化为脱落酸。
脱落酸的生理功能有以下几种:
第一、促进休眠。外用ABA时,可使旺盛生长的枝条停止生长而进入休眠,这是它最初也被称为"休眠素"的原因。在秋天的短日条件下,叶中甲瓦龙酸合成GA的量减少,而合成的ABA量不断增加,使芽进入休眠状态以便越冬。种子休眠与种子中存在脱落酸有关,如桃、蔷薇的休眠种子的外种皮中存在脱落酸,所以只有通过层积处理,脱落酸水平降低后,种子才能正常发芽。