钢铁企业职业性危害因素与预防 
在钢铁企业生产过程中存在的职业病危害因素种类很多,长期以来始终威胁着劳动者的身心健康,经过积极治理,使职业危害现状得到了很大的改观了,但是,在生产的环节中仍存在着很大的危害。
一、生产过程中职业性危害因素
(一)、炼铁生产中最主要的有害因素是高温、热辐射、一氧化碳等,若矿石中含有氟化物,则冶炼时还可有氟的污染。在旧式炼铁厂中,体力劳动强度较大,工伤事故较多(以烧伤为主)。现代化远距离操纵的大型炼铁厂,劳动条件较好,只有出铁、出渣、铸锭及管道漏气时才有可能受到上述有害因素的影响。通过出渣工艺和代替铁钎手工操作的技术改造降低了职业危害的影响,改善了作业环境。
(二)、炼钢生产过程中存在的主要职业病危害因素有粉尘、一氧化碳、高温及热辐射、噪声,其次是二氧化碳、氮氧化物、二氧化硫、氟化物、氟化氢、锰及其化合物、红外线等。
炼钢厂产生烟尘是炼钢生产过程中危害最大因素之一,大型企业中接尘工人占职工总数的39~
43%,有的平炉炼钢厂高达70%左右。主要尘源是吹氧烟尘,其次是出钢、出渣、浇注、整脱模和混铁炉倾倒铁水作业,修炉、拆炉和修罐作业,使用压缩空气吹扫技术,会所引起二次扬尘。炼钢厂烟尘是含大量氧化铁粉和约20%游离二氧化硅,粒度绝大部分小于10微米的混合粉尘。其特点是量大,使用吹氧的电炉、平炉炼钢比不吹氧的烟尘量约大10~15倍。目前,治理较好的炼钢厂岗位粉尘浓度或降到10毫克/立方米左右,粉尘合格率可达70%以上。
二、职业危害在钢铁生产系统中的分类
钢铁企业一般包括以下几个系统:冶炼系统、轧钢系统、热电系统、煤化工系统、物流输送系统、能源解质系统、检修及废弃物回收利用等生产辅助等系统、后勤保障系统等,其各系统产生职业危害因素的具体分布情况如下:
(一)、冶炼系统:岗位粉尘――矽尘、煤尘、石墨粉尘、石灰石粉尘、白云石粉尘、碳化硅粉尘、耐材尘(耐火纤维粉尘、粘土粉尘、氧化铝粉尘、陶土粉尘、硅藻土粉尘等)及其他粉尘(铁矿石、蛇纹石、氧化铁尘)等;化学毒物――一氧化碳、二氧化硫、焦炉逸散气(苯可溶物、3,4-苯并芘)、氟化氢、焦油、沥青等;物理因素――噪声、高温、放射性同位素。
(二)、轧钢系统:岗位粉尘――矽尘、其他粉尘(混合粉尘、氧化铁尘)等;化学毒物――一氧化碳、盐酸、硫酸、氢氧化钠、氧化锌、铬酸盐、苯系物、汽油、丙酮等;物理因素――噪声、高温、放射性同位素。
(三)、热电系统:岗位粉尘――煤尘;化学毒物――一氧化碳、、盐酸、硫酸、氢氧化钠;物理因素――噪声、高温、放射性同位素。
(四)、煤化工系统:岗位粉尘――煤尘(沥青焦粉尘)、石灰石粉尘及其他粉尘(有机粉尘:萘、硫铵、古马隆树脂粉尘)等;化学毒物――一氧化碳、二氧化硫、硫化氢、、硫酸、氨、苯系物、酚、萘、吡啶、焦油、沥青等;物理因素――噪声、高温、放射性同位素。
(五)、物流输送系统:岗位粉尘――矽尘、煤尘、石墨粉尘、石灰石粉尘、白云石粉尘、碳化硅粉尘、耐材尘及其他粉尘等;化学毒物――二氧化硫、氮氧化物、盐酸、硫酸、氢氧化钠、氨、焦油、沥青等;物理因素――噪声、高温、振动等。
  (六)、能源解质系统:岗位粉尘――其他粉尘(水处理污泥、药剂等混合尘);化学毒物――一氧化碳、、盐酸、硫酸、氢氧化钠等;物理因素――噪声、高温等。
(七)、检修及废弃物回收利用等生产辅助等系统:根据作业性质与作业地点(区域)可与上述6个系统内存在的职业病危害因素中的某一项因素一致;设备制造、检修另增电焊尘、氧化锰、甲醛、紫外线。
(八)、后勤保障系统:岗位粉尘――煤尘、电焊尘其他粉尘(混合尘)等;化学毒物――一氧化碳、盐酸、氢氧化钠、汽油、苯系物、有机磷农药等;物理因素――噪声、高温、紫外线、放射性同位素等。
三 、钢铁企业的职业危害因素 
(一)、粉尘危害因素
1、粉尘的来源及分类
 ①、粉尘及粉尘来源:能够较长时间呈浮游状在空气中的固体微粒叫粉尘。在生产过程中所形成的粉尘叫生产性粉尘。按胶体化学的观点,粉尘是一种气溶胶,其分散介质是空气,分散相是固体微粒。
生产过程粉尘的主要来源:
(1)固体物质的机械加工或粉碎,如金属研磨、切削、钻孔、爆破、破碎、磨粉、农林产品加工等。
(2)物质加热时产生的蒸气在空气中凝结或被氧化所形成的尘粒,如金属熔炼,焊接、浇铸等。
(3)有机物质不完全燃烧所形成的微粒,如木材、油、煤类等燃烧时所产生的烟尘等。
(4)铸件的翻砂、清砂粉状物质的混合,过筛、包装、搬运等操作过程中,以及沉积的粉尘由于振动或气流运动,使沉积的粉尘重又浮游于空气中(产生二次扬尘)也是粉尘的来源。
  ②、粉尘的分类:粉尘的分类,通常有两种方法,一是按粉尘的性质分类,另一种是按粉尘颗粒的大小分类。
  按粉尘的性质分类:(1)无机性粉尘:包括矿物粉尘(如砂、煤):金属性粉尘(如铁、锡、铅及其化合物);人工无机粉尘(如金刚砂、水泥、玻璃纤维)。(2)有机性粉尘:包括植物性粉尘(如木材、烟草、面粉)动物性粉尘(如兽皮、角质、毛发);人工有机粉尘(如、有机染料、塑料、化纤);(3)混合性粉尘,上述多种粉尘的混合物(如金属研磨时,金属和磨料粉尘
混合物等)。在职业健康工作中,常依据粉尘性质,初步判断其对人体危害机理及程度。
  按粉尘颗粒的大小分类:(1)灰尘:粉尘粒子的直径大于10微米,在静止的空气中,以加速沉降,不扩散。(2)尘雾:粉尘粒子的直径介于10~0.1微米,在静止的空气中,以等速降落,不易扩散。(3)烟尘:粉尘粒子直径为0.1~0.001微米,因其大小接近于空气分子,受空气分子的冲撞呈布朗运动(不规则运动),几乎完全不沉降或非常缓慢而曲折地降落。由于粉尘颗粒的大小不同,在空气中滞留的时间长短也不同,直接影响操作人员的接尘时间。粉尘在空气中呈现的状态不同所采取的治理方法也不同。
 2、粉尘的浓度,分散度、溶解度、形状和硬度对职业危害的影响
  粉尘浓度:粉尘浓度表示方法有两种,一种以单位体积空气中的粉尘重量(毫克/立方米)表示;另一种是用单位体积空气中的粒子数(粒子数/立方厘米)表示。我认为前者较为合理,后者涉及到粉尘粒子直径组别及大小。粉尘浓度直接决定粉尘对人体的危害程度,粉尘浓度愈高,则危害愈大。如粉尘中游离二氧化硅是粉尘矽肺的病源,二氧化硅含量愈高,危害愈大,引起的病变越严重,病变的发展速度也越快。因而制定生产车间作业地带空气中粉尘的最高容许浓度有着重要的意义。
  粉尘分散度:粉尘分散度是表示粉尘颗粒大小的一个概念,分散相由越小的尘粒组成时,则分散度越高;反之则越低。它是用粉尘颗粒按直径大小分组的重量百分比表示,即取样粉尘中颗粒直径为d(按直径大小分组的类别)的粉尘重量(克)与取样粉尘总重量(克)的百分比,为该组的分散度。当粉尘粒子的比重衡定时,分散度愈高则粉尘粒子沉降愈慢,在空气中飘浮的时间愈长。在静止的空气中,1微米以下的粉尘,从1.5~2米高处降落到地面,则需5~7小时,因而被人吸入的机会也就愈多。分散度还与粉尘在人体呼吸道中的阻留有关,尘粒愈大,被阻留于上呼吸道的可能性愈大,尘粒愈小,通过上呼吸道而吸人肺内的机会愈多,危害也就越大。
  粉尘溶解度:粉尘溶解度大小对人体危害程度的关系,因粉尘的性质不同而各异。主要呈化学性作用的粉尘,随溶解度的增加其危害作用增强;呈机械刺激作用的粉尘与此相反,随溶解度的增加其危害作用减弱。难溶性粉尘都能引起气管炎和肺组织纤维化(尘肺)。有毒脂溶性(溶解于油脂)和水溶性(溶于水)粉尘,通过湿润的上呼吸道能迅速溶解而被吸收,还可通过人体表皮的汗腺、皮脂腺、毛囊进人人体而产生中毒反应。
粉尘的形状和硬度:粉尘颗粒形状多种多样,有块状、片状、针状、球状、线装等。粉尘因
形状不同,在沉降时所受空气的阻力也不同。当粉尘作用于上呼吸道、眼粘膜和皮肤时,尘粒形状和硬度具有一定意义。锐利而坚硬的尘粒往往引起机械损伤较大,柔软的长纤维状有机粉尘,易沉着于气管、大中支气管的粘膜上,使呼吸道粘膜覆盖着一层绒毛样物质,易产生慢性支气管炎及气管炎。
 3、粉尘的特性
  ⑴、粉尘荷电性:经测定和超显微观察,飘浮在空气中的尘粒有90~95%荷正电或负电,5~10%的尘粒不带电。此种电荷的来源,或是粉碎时及流动时摩擦而产生,或是吸附了空气中的带电离子,或与其他带电物体表面接触而带电荷。同一种尘粒可带正电、负电或不带电。尘粒的荷电性对粉尘在空气中的稳定程度有一定影响。同性电荷相斥,增加尘粒浮游在空气中的滞留时间而增加人体吸入量,异性电荷相吸引,可使尘粒在撞击时凝聚而沉降,我们常利用粉尘的荷电性能进行除尘。
>企业性质分类