冯诺依曼体系结构
内容概述
冯·诺依曼体系结构冯·诺依曼理论的要点是:数字计算机的数制采用二进制;计算机应该按照程序顺序执行。 人们把冯·诺依曼的这个理论称为冯·诺依曼体系结构。从ENIAC到当前最先进的计算机都采用的是冯·诺依曼体系结构。所以冯·诺依曼是当之无愧的数字计算机之父。教师节制作贺卡
根据冯·诺依曼体系结构构成的计算机,必须具有如下功能:把需要的程序和数据送至计算机中。必须具有长期记忆程序、数据、中间结果及最终运算结果的能力。能够完成各种算术、逻辑运算和数据传送等数据加工处理的能力。能够根据需要控制程序走向,并能根据指令控制机器的各部件协调操作。能够按照要求将处理结果输出给用户。
为了完成上述的功能,计算机必须具备五大基本组成部件,包括:输入数据和程序的输入设备、记忆程序和数据的存储器、完成数据加工处理的运算器、控制程序执行的控制器、输出处理结果的输出设备。100首必听流行歌曲
.诺依曼体系结构对计算机发展的限制
从计算机诞生那天起,冯.诺依曼体系结构占据着主导地位,几十年来计算机体系结构理论并没有新理论出现。随着计算机应用范围的迅速扩大,使用计算机解决的问题规模也越来越大,因此对计算机运算速度的要求也越来越高。而改进计算机的体系结构是提高计算机速度的重要途径,从而促进了计算机体系结构的发展,出现了诸如数据流结构、并行逻辑结构、归约结构等新的非冯诺依曼体系结构。
冯·诺依曼体系结构
.诺依曼体系结构是现代计算机的基础,现在大多计算机仍是冯.诺依曼计算机的组织结构,只是作了一些改进而已,并没有从根本上突破冯体系结构的束缚。冯.诺依曼也因此被人们称为“计算机之父”。然而由于传统冯.诺依曼计算机体系结构天然所具有的局限性,从根本上限制了计算机的发展。
(1)采用存储程序方式,指令和数据不加区别混合存储在同一个存储器中,(数据和程序在内存中是没有区别的,它们都是内存中的数据,EIP指针指向哪 CPU就加载那段内存中的数
,如果是不正确的指令格式,CPU就会发生错误中断. 在现在CPU的保护模式中,每个内存段都其描述符,这个描述符记录着这个内存段的访问权限(可读,可写,可执行).这最就变相的指定了哪个些内存中存储的是指令哪些是数据)
指令和数据都可以送到运算器进行运算,即由指令组成的程序是可以修改的。习雪个人资料
(2)存储器是按地址访问的线性编址的一维结构,每个单元的位数是固定的。
(3)指令由操作码和地址组成。操作码指明本指令的操作类型,地址码指明操作数和地址。操作数本身无数据类型的标志,它的数据类型由操作码确定。
(4)通过执行指令直接发出控制信号控制计算机的操作。指令在存储器中按其执行顺序存放,由指令计数器指明要执行的指令所在的单元地址。指令计数器只有一个,一般按顺序递增,但执行顺序可按运算结果或当时的外界条件而改变。
(5)以运算器为中心,I/O设备与存储器间的数据传送都要经过运算器。
(6)数据以二进制表示。
从本质上讲,冯.诺依曼体系结构的本征属性就是二个一维性,即一维的计算模型和一维的存储模型,简单地说“存储程序”是不确切的。而正是这二个一维性,成就了现代计算机的辉煌,也限制了计算机的进一步的发展,真可谓“成也冯,败也冯”。
冯·诺依曼计算机的软件和硬件完全分离,适用于作数值计算。这种计算机的机器语言同高级语言在语义上存在很大的间隔,称之为冯.依曼语义间隔。造成这个差距的其中一个重要原因就是存储器组织方式不同,冯·诺依曼机存储器是一维的线性排列的单元,按顺序排列的地址访问。而高级语言表示的存储器则是一组有名字的变量,按名字调用变量,不考虑访问方法,而且数据结构经常是多维的(如数组,表格)。另外,在大多数高级语言中,数据和指令截然不同,并无指令可以像数据一样进行运算操作的概念。同时,高级语言中的每种操作对于任何数据类型都是通用的,数据类型属于数据本身,而冯.诺依曼机的数据本身没有属性标志,同一种操作要用不同的操作码来对数据加以区分。这些因素导致了语义的差距。如何消除如此大的语义间隔,这成了计算机面临的一大难题和发展障碍。
.诺依曼体系结构的局限严重束缚了现代计算机的进一步发展,而非数值处理应用领域对计算机性能的要求越来越高,这就亟待需要突破传统计算机体系结构的框架,寻求新的体
系结构来解决实际应用问题。目前在体系结构方面已经有了重大的变化和改进,如文章开头提到的并行计算机、数据流计算机以及量子计算机、 DNA计算机等非冯计算机,它们部分或完全不同于传统的冯.诺依曼型计算机,很大程度上提高了计算机的计算性能。
非诺依曼化
必须看到,传统的冯·诺依曼型计算机从本质上讲是采取串行顺序处理的工作机制,即使有关数据巳经准备好,也必须逐条执行指令序列。而提高计算机性能的根本方向之一是并行处理。因此,近年来人们谋求突破传统冯·诺依曼体制的束缚,这种努力被称为非诺依曼化。对所谓非诺依曼化的探讨仍在争议中,一般认为它表现在以下三个方面的努力。
1)在冯·诺依曼体制范畴内,对传统冯·诺依曼机进行改造,如采用多个处理部件形成流水处理,依靠时间上的重叠提高处理效率;又如组成阵列机结构,形成单指令流多数据流,提高处理速度。这些方向已比较成熟,成为标准结构;
2)用多个冯·诺依曼机组成多机系统,支持并行算法结构。这方面的研究目前比较活跃;
3)从根本上改变冯·诺依曼机的控制流驱动方式。例如,采用数据流驱动工作方式的数据流计算机,只要数据已经准备好,有关的指令就可并行地执行。这是真正非诺依曼化的计算机,它为并行处理开辟了新的前景,但由于控制的复杂性,仍处于实验探索之中。
我们看一下这个结构图:
冯诺依曼体系结构图
在看一下他的意思
冯·诺依曼设计思想可以简要地概括为以下三点:
1)计算机应包括运算器、存储器、控制器、输入和输出设备五大基本部件。
2)计算机内部应采用二进制来表示指令和数据。每条指令一般具有一个操作码和一个地址码。其中操作码表示运算性质,地址码指出操作数在存储器中的地址。
3)采用存储程序方式。将编好的程序送人内存储器中,然后启动计算机工作,计算机勿需操作人员干预,能自动逐条取出指令和执行指令。
从以上三条可以看出,以前所有的讨论都是针对冯.诺依曼设计思想论述的,不过没有明确指出其人罢了。冯.诺依曼设计思想最重要之处在于明确地提出了“程序存储”的概念,他的全部设计思想实际上是对“程序存储”概念的具体化。
2、计算机的工作过程
了解了“程序存储”,再去理解计算机工作过程变得十分容易。如果想叫计算机工作,就得先把程序编出来,然后通过输人设备送到存储器中保存起杂,即程序存储。接来就是执行程序的问题了。根据冯.诺依曼的设计,计算机应能自动执行程序,而执行程序又归结为逐条执行指令:
1)取出指令:从存储器某个地址中取出要执行的指令送到 CPU 内部的指令寄存器暂存;
2)分析指令:把保存在指令寄存器中的指令送到指令寄存器,译出该指令对应的微操作;
3)执行指令:根据招令译码器向各个部件发出相应控制信号,完成指令规定的操作;为执行下一条指令做好准备,即形成下一条指令地址;
4)为执行下一条指令做好准备,即形成下一条指令地址。
二、计算机的工作原理
计算机的基本工作原理是存储程序和程序控制,按照程序编排的顺序,一步一步地取出命令,自动地完成指令规定的操作。
1、预先把指挥计算机如何进行操作的指令序列(称为程序)和原始数据输入到计算机内存中,每一条指令中明确规定了计算机从哪个地址取数,进行什么操作,然后送到什么地方去等步骤。
2、计算机在运行时,先从内存中取出第1条指令,通过控制器的译码器接受指令的要求,再从存储器中取出数据进行指定的运算和逻辑操作等,然后再按地址把结果送到内存中去。接下来,取出第2条指令,在控制器的指挥下完成规定操作,依此进行下去,直到遇到停止指令。
3、计算机中基本上有两股信息在流动。一种是数据,即各种原始数据、中间结果和程序等。原始数据和程序要由输入设备输入并经运算器存于存储器中,最后结果由运算器通过输出设备输出。在运行过程中,数据从存储器读入运算器进行运算,中间结果也要存入存储器中。人们用机器自身所具有的指令编排的指令序列,即程序,也是以数据的形式由存储器送入控制器,再由控制器向机器的各个部分发出相应的控制信号。另一种信息是控制信息,它控制机器的各部件执行指令规定的各种操作。
哈佛结构简介
DSP算法中,最大量的工作之一是与存储器交换信息,这其中包括作为输入信号的采样数据、滤波器系数和程序指令。例如,如果将保存在存储器中的2个数相乘,就需要从存储器中取3个二进制数,即2个要乘的数和1个描述如何去做的程序指令。图〔a)显示了一个传
统的微处理器是如何做这项工作的。这被称为冯诺依曼结构,是以一位数学家的名字命名的。
诺依曼结构中,只有一个存储器,通过一条总线来传送数据。乘两个数至少需要3个指令周期,即通过总线将这3个数从存储器中送到CPU。所以这种结构在面对高速、实时处理时,不可避免地造成总线拥挤。为此,哈佛大学提出了与冯诺依曼结构完全不同的另一种计算机结构,人们习惯称之为哈佛结构,如图(b)所示。它根据数据和数据指令将存储器和总线分开。因此,总线操作是独立的,能同时取指令和数据,提高了速度。
目前DSP内部一般采用的是哈佛结构,它在片内至少有4套总线:程序的数据总线,程序的地址总线,数据的数据总线和数据的地址总线。这种分离的程序总线和数据总线,可允许同时获取指令字(来自程序存储器)和操作数(来自数据存储器),而互不干扰。这意味着在一个机器周期内可以同时准备好指令和操作数。有的DSP芯片内部还包含有其他总线,如DMA总线等,可实现单周期内完成更多的工作。这种多总线结构就好像在DSP内部架起了四通八达的高速公路,保障运算单元及时地取到需要的数据,提高运算速度。因此,对DSP来说,内部总线是个资源,总线越多,可以完成的功能就越复杂。
超级哈佛结构(super Harvard architecture单位鉴定,缩写为SHARC)如图(c)所示,它在哈佛结构上增加了指令cache(缓存)金秀贤整容和专用的I/O控制器。
魔方教程公式口诀七步 新手入门哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。哈佛结构是
哈佛结构