2020 年普通高等学校招生全国统一考试
数学(海南)
一、选择题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项符合题目要求的)
1. 设集合A {2,3,5,7},B={1,2,3,5,8},则=( )
A. {1,3,5,7} B. {2,3} C. {2,3,5} D. {1,2,3,5,7,8}
2. =( )
A. B. C. D.
3. 在中,D庆祝教师节黑板报是AB边上的中点,则=( )
A. B. C. D.
绣球小苗4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点小商品进货A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )
A. 20° B. 40°
C. 50° D. 90°
5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
央行回应忘记有多少张银行卡怎么办A. 62% B. 56%
C 46% D. 42%
6. 要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )
A. 2种 B. 3种 C. 6种 D. 8种
7. 已知函数在上单调递增,则的取值范围是( )
A. B. C. D.
8. 若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是( )
A. B.
C. D.
二、选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分)
9. 我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )
A. 这11天复工指数和复产指数均逐日增加;
B. 这11天期间,复产指数增量大于复工指数的增量;
C. 第3天至第11天复工复产指数均超过80%;
D. 第9天至第11天复产指数增量大于复工指数的增量;
10. 已知曲线.( )
A. 若m>n>0,则C是椭圆,其焦点在y轴上
B. 若高云翔案件发生了什么m=n>0,则C圆,其半径为
C. 若mn<0,则C是双曲线,其渐近线方程为
D. 若m=0,n>0,则C是两条直线
11. 下图是函数y= sin(ωx+φ)的部分图像,则sin(ωx+φ)= ( )
A. B. C. D.
12. 已知a>0,b>0,且a+b=1,则( )
A. B.
C. D.
三、填空题(本题共 4 小题,每小题 5 分,共 20 分)
13. 已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________
14. 斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.
15. 将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.
16. 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12 cm,DE=有匪电视剧2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2.
四、解答题(本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)
17. 在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.
发布评论