运⽤SPSS及AMOS进⾏中介效应分析
中介效应重要理论及操作务实
⼀、中介效应概述
中介效应是指变量间的影响关系(X→Y)不是直接的因果链关系⽽是通过⼀个或⼀个以上变量(M)的间接影响产⽣的,此时我们称M 为中介变量,⽽X通过M对Y产⽣的的间接影响称为中介效应。中介效应是间接效应的⼀种,模型中在只有⼀个中介变量的情况下,中介效应等于间接效应;当中介变量不⽌⼀个的情况下,中介效应的不等于间接效应,此时间接效应可以是部分中介效应的和或所有中介效应的总和。在⼼理学研究当中,变量间的关系很少是直接的,更常见的是间接影响,许多⼼理⾃变量可能要通过中介变量产⽣对因变量的影响,⽽这常常被研究者所忽视。例如,⼤学⽣就业压⼒与择业⾏为之间的关系往往不是直接的,⽽更有可能存在如下关系:
○1就业压⼒→个体压⼒应对→择业⾏为反应。
香菇油菜怎么做此时个体认知评价就成为了这⼀因果链当中的中介变量。在实际研究当中,中介变量的提出需要理论依据或经验⽀持,以上述因果链为例,也完全有可能存在另外⼀些中介因果链如下:
○2就业压⼒→个体择业期望→择业⾏为反应;
○3就业压⼒→个体⽣涯规划→择业⾏为反应;
因此,研究者可以更具⾃⼰的研究需要研究不同的中介关系。当然在复杂中介模型中,中介变量往往不⽌⼀个,⽽且中介变量和调节变量也都有可能同时存在,导致同⼀个模型中即有中介效应⼜有调节
效应,⽽此时对模型的检验也更复杂。
以最简单的三变量为例,假设所有的变量都已经中⼼化,则中介关系可以⽤回归⽅程表⽰如下:
Y=cx+e1 1)
M=ax+e2 2)
Y=c’x+bM+e3 3)
上述3个⽅程模型图及对应⽅程如下:
⼆、中介效应检验⽅法
中介效应的检验传统上有三种⽅法,分别是依次检验法、系数乘积项检验法和差异检验法,下⾯简要介绍下这三种⽅法:
1.依次检验法(causual steps)。依次检验法分别检验上述1)2)3)三个⽅程中的回归系数,程序如下:
1.1⾸先检验⽅程1)y=cx+ e1,如果c显著(H0:c=0被拒绝),则继续检验⽅程2),如果c不显著(说明X对Y⽆影响),则停⽌中介效应检验;
1.2在c显著性检验通过后,继续检验⽅程2)M=ax+e2,如果a 显著(H0:a=0被拒绝),则继续检验⽅程3);如果a不显著,则停⽌检验;
1.3在⽅程1)和2)都通过显著性检验后,检验⽅程3)即y=c ’x
+ bM + e 3,检验b 的显著性,若b 显著(H0:b=0被拒绝),则说明中
介效应显著。此时检验c ’,若c ’显著,则说明是不完全中介效应;若不显著,则说明是完全中介效应,x 对y 的作⽤完全通过M 来实现。评价:依次检验容易在统计软件中直接实现,但是这种检验对于较
弱的中介效应检验效果不理想,如a 较⼩⽽b 较⼤时,依次检验判定为中介效应不显著,但是此时ab 乘积不等于0,因此依次检验的结果容易犯第⼆类错误(接受虚⽆假设即作出中介效应不存在的判断)。
2.系数乘积项检验法(products of coefficients)。此种⽅法主要检验ab 乘积项的系数是否显著,检验统计量为z = ab/ s ab ,实际上熟
之的用法悉统计原理的⼈可以看出,这个公式和总体分布为正态的总体均值显著性检验差不多,不过分⼦换成了乘积项,分母换成了乘积项联合标准误⽽已,⽽且此时总体分布为⾮正态,因此这个检验公式的Z 值和正态分布下的Z 值检验是不同的,同理临界概率也不能采⽤正态分布概率曲线来判断。具体推导公式我就不多讲了,⼤家有兴趣可以⾃⼰去看相关统计书籍。分母s ab 的计算公式为:s ab =2222a b s b s a ,在这个
公式中,s b 2和s a 2分别为a 和b 的标准误,这个检验称为sobel 检验,
当然检验公式不⽌这⼀种例如Goodman I 检验和Goodman II 检验都可以检验(见下),但在样本⽐较⼤的情况下这些检验效果区别不⼤。在AMOS 中没有专门的soble 检验的模块,需要⾃⼰⼿⼯计算出。⽽在lisrel ⾥⾯则有,其临界值为z α/2>0.97或z α/2<-
0.97(P <0.05,N ≧200)。关于临界值⽐率表见附件(虚⽆假设概率分布见MacKinnon
表中⽆中介效应C.V.表,双侧概率,⾮正态分布。这个临界表没有直接给出.05的双侧概率值,只有.04的双侧概率值;以N=200为例,.05的双侧概率值在其表中⼤概在±0.90左右,⽽不是温忠麟那篇⽂章中提出的0.97。关于这⼀点,我看了温的参考⽂献中提到的MacKinnon那篇⽂章,发现温对于.97的解释是直接照搬MacKinnon 原⽂中的⼀句话,实际上在MacKinnon的概率表中,这个.97的值是在N=200下对应的.04概率的双侧统计值,⽽不是.05概率双侧统计值,因为在该表中根本就没有直接给出.05概率的统计值。为了确定这点,我专门查了国外对这个概率表的介绍,发现的确如此,相关⽂章见附件mediationmodels.rar。当然,从统计概率上来说,⼤于0.97在这个表中意味着其值对应概率⼤于.05,但是当统计值⼩于0.9798th 时⽽⼤于0.8797th,其值对应概率的判断就⽐较⿇烦了,此时要采⽤0.90作为P<.05的统计值来进⾏判断。之所以对温的⽂章提出质疑,是因为这涉及到概率检验的结果可靠性,我为此查了很多资料,累)。Goodman I检验公式如下 Goodman II检验检验公式如下
注:从统计学原理可知,随着样本量增⼤,样本均值和总体均值的差
误趋向于减少;因此从这两个公式可看出,的值随着样本容量增⼤⽽呈⼏何平⽅值减⼩,⼏乎可以忽略不计算,因此MacKinnon et al. (1998)认为乘积项在样本容量较⼤时是“trivial ”(琐碎不必要的)的,因此sobel 检验和Goodman 检验结果在⼤样本情况下区别不⼤,三个检验公式趋向于⼀致性结果,因此⼤家⽤soble 检验公式就可以了(详情请参考⽂献A Comparison of Methods to Test Mediation and Other Intervening Variable Effects. Psychological Methods 2002, Vol. 7, No. 1, 83–104)。
评价:采⽤sobel 等检验公式对中介效应的检验容易得到中介效应显著性结果,因为其临界概率(MacKinnon )P<.05的Z 值为z
α/2>0.90或z α/2<-0.90,⽽正态分布曲线下临界概率P<.05的Z 值为z α/2>1.96或z α/2<-1.96,因此⽤该临界概率表容易犯第⼀类错误(拒绝虚⽆假设⽽作出中介效应显著的判断)
常春晓3.差异检验法(difference in coefficients)。此⽅法同样要出联合标准误,⽬前存在⼀些计算公式,经过MacKinnon 等⼈的分析,认为其中有两个公式效果较好,分别是Clogg 等⼈和Freedman 等⼈提出的,这两个公式如下:
Clogg 差异检验公式 Freedman 差异检验公式
'3'c xm N s r c c t -=- 2'2'2'212xm C C C C N r S S S S C C t --+-=-
这两个公式都采⽤t 检验,可以通过t 值表直接查出其临界概率。
浙菜
Clogg等提出的检验公式中,的下标N-3表⽰t检验的⾃由度为N-3,为⾃变量与中介变量的相关系数,为X对Y的间接效应估计值的标准误;同理见Freedman检验公式。
评价:这两个公式在a=0且b=0时有较好的检验效果,第⼀类错误率接近0.05,但当a=0且b≠0时,第⼀类错误率就⾮常⾼,有其是Clogg 等提出的检验公式在这种情况下第⼀类错误率达到100%,因此要谨慎对待。
4.温忠麟等提出了⼀个新的检验中介效应的程序,如下图:
这个程序实际上只采⽤了依次检验和sobel检验,同时使第⼀类错误率和第⼆类错误率都控制在较⼩的概率,同时还能检验部分中介效应和完全中介效应,值得推荐。
三中介效应操作在统计软件上的实现
根据我对国内国外⼀些⽂献的检索、分析和研究,发现⽬前已经有专门分析soble检验的⼯具软件脚本,可下挂在SPSS当中;然⽽
在AMOS中只能通过⼿⼯计算,但好处在于能够⽅便地处理复杂中介模型,分析间接效应;根据温忠
麟介绍,LISREAL也有对应的SOBEL 检验分析命令和输出结果,有鉴于此,本⽂拟通过对在SPSS、AMOS 中如何分析中介效应进⾏操作演⽰,相关SOBEL检验脚本及临界值表(⾮正态SOBEL检验临界表)请看附件。
1.如何在SPSS中实现中介效应分析
这个部分我主要讲下如何在spss中实现中介效应分析(⽆脚本,数据见附件spss中介分析数据,⾃变量为⼯作不被认同,中介变量为焦虑,因变量为⼯作绩效)。
第⼀步:将⾃变量(X)、中介变量(M)、因变量(Y)对应的潜变量的项⽬得分合并取均值并中⼼化,见下图
冬奥会最新奖牌榜出炉杨紫男朋友是谁在这个图中,⾃变量(X)为⼯作不被认同,包含3个观测指标,即领导不认同、同事不认可、客户不
认可;中介变量(M)焦虑包含3个观测指标即⼼跳、紧张、坐⽴不安;因变量(Y)包含2个观测指标即效率低和效率下降。
Descriptive Statistics
上⾯三个图表⽰合并均值及中⼼化处理过程,⽣成3个对应的变量并
中⼼化(项⽬均值后取离均差)得到中⼼化X 、M 、Y 。
第⼆步:按温忠麟中介检验程序进⾏第⼀步检验即检验⽅程y=cx+e
中的c 是否显著,检验结果如下表:
Model Summary
a Predictors: (Constant), 不被认同(中⼼化)
由上表可知,⽅程y=cx+e 的回归效应显著,c 值.678显著性为p<.000,
可以进⾏⽅程m=ax+e 和⽅程y=c ’x+bm+e 的显著性检验;
第三步:按温忠麟第⼆步检验程序分别检验a 和b 的显著性,如果都显
著,则急需检验部分中介效应和完全中介效应;如果都不显著,则停⽌检验;如果a或b其中只有⼀个较显著,则进⾏sobel检验,检验结果见下表:
由上⾯两个表格结果分析可知,⽅程m=ax+e中,a值0.533显著性
p<.000,继续进⾏⽅程y=c’x+bm+e的检验,结果如下表:
由上⾯两个表的结果分析可知,⽅程y=c’x+bm+e中,b值为0.213显
著性为p<.000,因此综合两个⽅程m=ax+e和y=c’x+bm+e的检验结果,a和b都⾮常显著,接下来检验中介效应的到底是部分中介还是完全中介;
第四步:检验部分中介与完全中介即检验c’的显著性:
由上表可知,c’值为.564其p值<.000,因此是部分中介效应,⾃变量对因变量的中介效应不完全通过中介变量焦虑的中介来达到其影响,⼯作不被认同对⼯作绩效有直接效应,中介效应占总效应的⽐值为:effect m=ab/c=0.533×0.213/0.678=0.167,中介效应解释了因变量
的⽅差变异为sqrt(0.490-0.459)=0.176(17.6%)
⼩结在本例中,中介效应根据温忠麟的检验程序最后发现⾃变量和因变量之间存在不完全中介效应,中介效应占总效应⽐值为
0.167,中介效应解释了因变量17.6%的⽅差变异。
2.在spss中运⽤spssmaro脚本来分析中介效应
下⾯我们采⽤Preacher(2004)设计的spssmaro脚本来进⾏中介效应分析,该脚本是美国俄亥俄和州⽴⼤学Preacher和Hayes于2004年开发的在spss中计算间接效应、直接效应和总效应的脚本,对间接效应的计算采⽤了sobel检验,并给出了显著性检验结果,这个脚本可在如下⽹址下载:www.doczj/doc/a8339d1114791711cc79172d.html /ahayes/sobel.htm。脚本⽂件名为
sobel_spss,关于如何在spss使⽤该脚本请看附件(附件为pdf⽂件,⽂件名为runningscripts)。在运⾏了脚本后,在打开的窗⼝中分别输⼊⾃变量、中介变量和调节变量,在选项框中可以选择bootstrap(⾃抽样)次数,设置好后,点击ok,运⾏结果如下: