数学六年级上册第二单元知识点
北师大版数学六年级上册第二单元知识点
数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,下面是店铺收集的,欢迎大家阅读和参考。
数学六年级上册第二单元知识点 篇1
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。丧尸片排行榜前十名电影
4.小数与百分数互化的规则:
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
飞机失事赔偿多少钱5.百分数与分数互化的规则:
把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
以上是数学网为大家准备的北师大版数学六年级上册第二单元知识点,希望对大家有所帮助。
数学六年级上册第二单元知识点 篇2
王力宏学历1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h + 2×πr2
7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×h
8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×h
(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)
9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)
11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3 Sh或πr2×h÷3
13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
小学数学基数和序数简介
基数:一、二、三、四、五、六、七、八、九、十。
序数:第一、第二、第三、第四、第五、第六、第七、第八、第九、第十。
基数在数学上,是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的.集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。
序数原来被定义为良序集的序型,而良序集A的序型,作为从A的元素的属性中抽象出来的结果,是所有与A序同构的一切良序集的共同特征,即定义为{B|BA}。
数学图形的变换知识点
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
数学六年级上册第二单元知识点 篇3
一、圆柱
1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。江畔独步寻花 古诗
圆柱也可以由长方形卷曲而得到。
两种方式:
1、以长方形的长为底面周长,宽为高;
2、以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
黄皓个人资料3、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高
4、圆柱的切割:
①横切:切面是圆,表面积增加2倍底面积,即S增=2πr?0?5
②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh
5、圆柱的侧面展开图:
①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形
②不沿着高展开,展开图形是平行四边形或不规则图形
③无论怎么展开都得不到梯形
圆柱变形记,圆柱怎么变形成长方体?与长方体又有什么联系?怎么借助长方体的体积计算圆柱的体积?
6、圆柱的相关计算公式:
底面积:S底=πr?0?5
底面周长:C底=πd=2πr
侧面积:S侧=2πrh
表面积:S表=2S底+S侧=2πr?0?5+2πrh
体积:V柱=πr?0?5h
考试常见题型:
①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长
②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积修仙类游戏
⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算
发布评论