高一数学公式总结优秀6篇
高一数学公式总结 篇一
    基本三角函数
    Ⅰ
    2ⅠⅡⅢⅣⅡ终边落在x轴上的角的集合:
    2Ⅰ、Ⅲ2Ⅰ、Ⅲ2Ⅱ、ⅣⅡ、Ⅳy轴上的角的集合:
    2,z终边落在
    ,z终边落在坐标轴上的角的集合:,
    22基本三角函数符号记“一全,二正弦,三切,四1180弧度忆:112Slrr余弦”弧度度180弧度lr360度2弧度。tancot1倒数关系:SinCsc1正六边形对角线上对应的三角函数之积为1
    CosSec1
    tan21Sec2平方关系:Sin2Cos2三个倒立三角形上底边对应三角函数的平方何等与对1边对应的三角函数的平方1Cot2Csc2乘积关系:SintanCos,顶点的三角函数等于相邻的点对应的函数乘积
    Ⅲ诱导公式终边相同的角的三角函数值相等
    Sin2kSin,k
    Cos2kCos,kztan2ktan,kz角与角关于x轴对称
    SinSinCosCostantan
    用心爱心专心115号编辑
    角与角关于y轴对称
    SinSinCosCostantan
    角与角关于原点对称SinSintantanCosCos
    角与角关于yx对称SinCosSinCos222Cos2SinCos2Sintan2cottan2cot上述的'诱导公式记忆口诀:“奇变偶不变,符号看象限”
    Ⅳ周期问题
    yASinx,A0,0,T2
    yACosx,A0,0,T2
    yASinx,A0,0,TyACosx,A0,0,TyASinxb,A0,0,b0,T2yACosxb,A0,0,b0,T2yAtanx,A0,0,TyAcotx,A0,0,T
    yAtanx,A0,0,TyAcotx,A0,0,TⅤ三角函数的性质性质ySinxyCosx定义域RR值域1,11,1周期性22奇偶性奇函数偶函数单调性2k,2k2k2,2k2,kz,增函数,kz,增函数2k,2k,kz,减函数2k32,2k2,kz,减函数
    2
    对称中心k,0,kzk2,0,kz对称轴xk2,kzxk,kz5图4534y23y12像x1-8-2π-6-3π/2-4-π-2-π/2O
π/22π43π/262π8-π/23π/2x-1-8-2π-6-3π/2-4-π-2Oπ/22π462π8-1-2-2-3-3-4-4-5-5-6性质ytanxycotx定义域某某,z某某,z2值域RR周期性奇偶性奇函数奇函数单调性k,k,kz,增函数22k,k,kz,增函数对称中心k,0,kzk2,0,kz对称轴无无10y86图y42x像-15-10-5-3π/2-π-π/2Oπ/2π3π/-20x-4-6-8-10怎样由ySinx变化为yASinxk?
    振幅变化:ySinxyASinx左右伸缩变化:
    yASinx左右平移变化yASin(x)上下平移变化yASin(x)k
    3
悦的拼音    Ⅵ平面向量共线定理:一般地,对于两个向量a,a0,b,如果有
    一个实数,使得ba,a0,则b与a是共线向量;反之如果b与a是共线向量那么又且只有一个实数,使得ba.
    Ⅶ线段的定比分点
火影佐助vs大蛇丸
    点P分有向线段P1P2所成的比的定义式P1PPP2.线段定比分点坐标公式线段定比分点向
量公式x1x2x1OP1OP2.OPy1y2y11当1时当1时
    线段中点坐标公式线段中点向量公式x1x2x2.2yy2y122
    Ⅷ向量的一个定理的类似推广 是不是我们不长大你们就不会变老是什么歌
    向量共线定理
    其中e1,e2为该平面内的两个平面向量基本定理:aee,1122不共线的向量推广
    a1e12e23e3,空间向量基本定理:其中e,e,e为该空间内的三个123不共面的向量
    Ⅸ一般地,设向量ax1,y1,bx2,y2且a0,如果a∥b那么x1y2x2y10反过来,如果x1y2x2y10,则a∥b.
    Ⅹ一般地,对于两个非零向量a,b有ababCos,其中θ为两向量的夹角。
    Cosababx1x2y1y2x12y12x22y22
    特别的,aaaa或者aⅪ
    22aa
    如果ax1,y1,bx2,y2且a0,则abx1x2y1y2特别的,abx1x2y1y20Ⅻ若正n边形A1A2An的中心为O,则An0
    三角形中的三角问题
    ABCABC,ABC,-22222ABCSinABSinCCosABCosCSinCos22
    ABCCosSin22正弦定理:
    abcabc2RSinASinBSinCSinASinBSinC余弦定理:
    a2b2c22bcCosA,b2a2c22acCosBcab2abCosC222
    b2c2a2a2c2b2CosA,CosB2bc2ac变形:222abcCosC2abtanAtanBtanCtanAtanBtanC
    三角公式以及恒等变换
    两角的和与差公式:SinSinCosCosSin,S()
    SinSinCosCosSin,S()CosCosCosSinSin,C()CosCosCosSinSin,C()
    tantan,T()1tantantantantan,T()1tantantan二倍角公式:
    Sin22SinCostantantan1tantan变形:tantantan1tantan
    tantantantantantan其中,,为三角形的三个内角Cos22Cos2112Sin2Cos2Sin22tantan21tan2
    半角公式:
    Sin21Cos2tan21CosCos22
小s 黄子佼    1CosSin1Cos
    1Cos1CosSin用心爱心专心115号编辑
    降幂扩角公式:Cos21Cos2,Sin21Cos2
    221SinSin21积化和差公式:CosSinSinSin
    21CosCosCosCos21SinSinCosCos2SinCosSinSin2SinCos22SinSin2CosSin和差化积公式:22CosCos2CosCos22CosCos2SinSin222tanSinSS2SC(SS2CS)
    2SS21tan22万能公式:
    1tan2Cos1tan222(STC)
    tan2tan2
    1tan2233三倍角公式:Sin33Sin4Sintan33tantan213tanCos34Cos33Cos“三四立,四立三,中间横个小扁担”
    用心爱心专心115号编辑6
    1.yaSinbCosa2b2Sin其中,tanba2.yaCosbSina2b2Sin其中,tanaba2b2Cos其中,tanba3.yaSinbCosa2b2Sin其中,tanbaa2b2Cos其中,tanab4.yaCosbSina2b2Sina2b2Sin其中,tanaba2b2Cos其中,tanba注:不同的形式有不同的化归,相同的形式也有不同的化归,进而可以求解最值问题。不需要死记公式,只要
记忆1.的推导即表达技巧,其它的就可以直接写出。一般是表达式第一项是正弦的就用两角和与差的正弦来靠,第一项是余弦的就用两角和与差的与弦来靠。比较容易理解和掌握。
    tantantan补充:1.由公式1tantan,T()tantantan1tantan,T()可以推导:当4时,z,1tan1tan2
    在有些题目中应用广泛。 张京的个人资料
    2.tantantantantantan3.柯西不等式(a2b2)(c2d2)(acbd)2,a,b,c,dR.
    补充
    1.常见三角不等式:(1)若x(0,2),则sin某某tanx.
新教师代表发言稿    (2)若x(0,2),则1sinxcosx2.(3)|sinx||cosx|1.
    2.sin()sin()sin2sin2(平方正弦公式);
    cos()cos()cos2sin2.
    asinbcos=a2b2sin()(辅助角所在象限由点(a,b)的象限决
    定,tanba)。
    3、三倍角公式:sin33sin4sin34sinsin(3)sin(3)。cos34cos33cos4coscos()cos(33)。用心爱心专心115号编辑
    7
    3tantan3tan3tantan()tan()。
    13tan2334.三角形面积定理:
    (1)S111ahabhbchc(ha、hb、hc分别表示a、b、c边上的222高)。
    (2)S111absinCbcsinAcasinB.(|OA||OB|)(OAOB)。
    (3)B2C22(AB)。222k5.三角形内角和定理在△ABC中,有ABCC(AB)
    26、正弦型函数yAsin(x)的对称轴为x(kZ);
    对称中心为(k,0)(kZ);
    类似可得余弦函数型的对称轴和对称中心;
    〈三〉易错点提示:
    1、在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、
    余弦函数的有界性了吗?
    2、在三角中,你知道1等于什么吗?
    这些统称为1的代换)常数“1”的种
    种代换有着广泛的应用.
    3、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。异角化同角,异名化同名,高次化低次)
    4、你还记得在弧度制下弧长公式和扇形面积公式吗?
    高一数学公式总结 篇二
    导数公式
    y=f(x)=c (c为常数)则f'(x)=0
    f(x)=x^n (n不等于0) f'(x)=nx^(n-1)(x^n表示x的`n次方)