刘徽的数学成就 | |||||||||||||||||||||||||||||||||||
文章来源:现代教育报·思维训练 作者:本报 点击数:3994 更新时间:2008-5-18 15:52:49 | |||||||||||||||||||||||||||||||||||
重差术是中国古代的一种重要测量方法,用以测量不可到达的距离.刘徽对这一理论进行了总结和提高,写出重差术专著---《海岛算经》(即《重差》).他在序言中说:“凡望极高、测绝深而兼知其远者必用重差.”全书只有九道题,但很有代表性. 例如第一题(译为今文):为测量海岛,立两根3丈高的标杆,前后相距1000步,令后杆与前杆对齐.从前杆后退123步,人眼着地看岛峰,视线正好过杆顶.从后杆后退127步,人眼着地看岛峰,视线也过杆顶.问岛高和岛离杆的距离各是多少? 按题意画图如下: 因当时1步为6尺,故标杆高5步.由刘徽术文,得 若用字母表示,则韩国泡菜的做法图解 因公式中用到d(两杆与岛的距离差)和a1-a2两差之比,所以叫重差术.这是书中最简单的一题,只须测望二次.其他问题往往要测望三次或四次,但原理与本题相同.刘徽曾著《重差图》和《重差注》,可能是用来推导术文的,已佚.估计刘徽的推导方法不外两种,一是利用出入相补,二是利用相似三角形. 如果用三角知识去解重差问题,结果也是一样的.中国传统数学无三角,重差术便起着与西方平面三角类似的作用,这是中国数学的特之一. 四、刘徽的学术思想 刘徽所以能在数学上取得卓越成就,是与他先进的学术思想分不开的.概括起来,他的学术思想有如下特点. 1.富于批判精神.刘徽在数学研究中不迷信权威,也不盲目地踩着前人的脚印走,而是有自己的主见.他曾一针见血地指出张衡关于球体积的不正确观点,还批评了那种泥守古人“周三径一”的踵古思想,说:“学者踵古,习其谬失.”刘徽正是因为有这种可贵的批判精神,才在研究《九章算术》时发现许多问题,从而深入探讨,写出名垂千古的《九章算术注》. 2.注意寻求数学内部的联系.刘徽在《九章算术注》的序言中说:“事类相推,各有攸归,故枝条虽分而同本干者,知发其一端而已.”不难看出,他的整个数学研究都贯穿了这一思想.例如,他把许多平面几何问题归为出入相补,把许多体积公式的推导归为刘徽原理,把各种比例问题归为今有术,以及用重差术的一般方法解决各种测量问题,都是这一思想的体现. 3.注意把数学的逻辑性和直观性结合起来.刘徽主张“析理以辞,解体用图”,就是说问题的理论分析要用明确的语言表达,空间图形的分解要用图形显示,也就是理论和直观并用.他认为只有这样才能使数学既简又明.实际上,他对原书和《九章算术注》中提出的重要数学概念,都给出明确定义.他对定理、公式的证明基本上采取演绎法,推理相当严密.例如,他从长方体体积公式出发,运用极限观念,证明了阳马定理,又用阳马定理证明了棱锥、棱台的体积公式,然后根据刘徽原理推出圆锥、圆台的体积公式,是一环扣一环的.另一方面,刘徽也很注意数学的直观.他常借助图形来证明平面几何定理,称为图验法;借助立体模型来研究开立方和推导体积公式,称为棋验法(刘徽称特定的立体模型为棋).有时,他还在证明过程中辅之以剪贴和涂的方法.总之,他在数学研究中既注意逻辑推理,又注意运用直观手段,所以他的理论明白易懂. 五、与刘徽同时代的数学家---赵爽 赵爽是三国时代吴国数学家.他与刘徽一南一北,各自独立地进行数学研究,刘注《九章算术》而赵注《周髀算经》.虽然《周髀算经注》没有《九章算术注》那样精采,但其中也有不少独到见解.尤其是一段名为“勾股圆方图”的论文,是数学史上的珍贵文献.文中给出勾股定理的证明,并导出勾、股、弦及其和差互求的24条命题.令人惊讶的是,这样丰富的内容,竟包含在仅五百余字的论文中,可见语言之精炼.下面便根据赵爽的弦图及注文,介绍他证明勾股定理的方法. 特殊的反义词 弦图是一个以勾股形之弦为边的正方形(图4.21),其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)及黄,其面积称朱实、黄实.因为勾×股=2朱实,所以2×勾×股=4朱实,又因为(股-勾)2=黄实,所以 2×勾×股+(股-勾)2=4朱实+黄实=弦实. 化简,得 勾2+股2=弦2. 另外,赵爽在《周髀算经注》中还给出并证明了日高术,构思十分巧妙.其术为:在地面上立两根高为h的表(标杆)AB和CD,它们之间距离为d,太阳照表,得影长a1,a2,则 赵爽画日高图如图4.22,证明思路如下: 由出入相补原理,得 科学博物馆英语怎么读 □HC=□CN,□GC=□AN(□表矩形面积). 相减,得 □HJ=□CB, ∴(a1-a2)×HI=dh, 赵爽的这种出入相补方法对后世有一定影响,只是由于日高术假定大地是平面,所以不可能得到日高的正确数值. </DIR< p> 文章来源:现代教育报·思维训练 作者:本报 点击数:4161 更新时间:2008-5-18 15:52:49 www.swxl/math/ShowArticle.asp?ArticleID=389&Page=1 amuseum.cdstm/AMuseum/math/4/46/4_46_1009.htm | |||||||||||||||||||||||||||||||||||
刘徽的数学成就
本文发布于:2025-01-19 08:09:49,感谢您对本站的认可!
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
- 上一篇: 思八达,刘一秒,运营智慧
- 下一篇: 形容把孩子培养成长的好词语
发布评论