今天立冬是什么时间2022
TFT是液晶屏的一种材质,Thin film Transistor,薄膜晶体管,液晶屏除了TFT材质以外,还有STN、UFB等,但目前像手机、笔记本电脑、PDA、数码相机等一般都采用的是TFT的,一些比较比较老的手机屏幕可能就是采用的STN的屏。
--------------------------------------------------------------
LED概述
LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜,是由形成P-N结的材料决定的。
LED历史
50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯线的作用,所以LED的抗震性能好。
发光二极管的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为P-N结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结施加反向电压时,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。 当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜的光线,光的强弱与电流有关。
最初LED用作仪器仪表的指示光源,后来各种光的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红交通信号灯为例,在美国本来是采用长寿命、低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红LED光源,包括电
路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。
对于一般照明而言,人们更需要白的光源。1998年白光的LED开发成功。这种LED是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含Ce3+的YAG荧光粉受此蓝光激发后发出黄光射,峰值550nm。蓝光LED基片安装在碗形反射腔中,覆盖以混有YAG的树脂薄层,约200-500nm。 LED基片发出的蓝光部分被荧光粉吸收,另一部分蓝光与荧光粉发出的黄光混合,可以得到得白光。现在,对于InGaN/YAG白LED,通过改变YAG荧光粉的化学组成和调节荧光粉层的厚度,可以获得温3500-10000K的各白光。这种通过蓝光LED得到白光的方法,构造简单、成本低廉、技术成熟度高,因此运用最多。
上个世纪60年代,科技工作者利用半导体PN结发光的原理,研制成了LED发光二极管。当时研制的LED,所用的材料是GaASP,其发光颜为红。经过近30年的发展,现在大家十分熟悉的LED,已能发出红、橙、黄、绿、蓝等多种光。然而照明需用的白光LED仅在近年才发展起来,这里向读者介绍有关照明用白光LED。
1、可见光的光谱和LED白光的关系。 众所周之,可见光光谱的波长范围为380nm~760nm,是人眼可感受到的七光——红、橙、黄、绿、青、蓝、紫,但这七种颜的光都各自是一种单光。例如LED发的红光的峰值波长为565nm。在可见光的光谱中是没有白光的,因为白光不是单光,而是由多种单光合成的复合光,正如太阳光是由七种单光合成的白光,而彩电视机中的白光也是由三基红、绿、蓝合成。由此可见,要使LED发出白光,它的光谱特性应包括整个可见的光谱范
围。但要制造这种性能的LED,在目前的工艺条件下是不可能的。根据人们对可见光的研究,人眼睛所能见的白光,至少需两种光的混合,即二波长发光(蓝光+黄光)或三波长发光(蓝光+绿光+红光)的模式。上述两种模式的白光,都需要蓝光,所以摄取蓝光已成为制造白光的关键技术,即当前各大LED制造公司追逐的“蓝光技术”。目前国际上掌握“蓝光技术”的厂商仅有少数几家,比如日本的日亚化学、日本的丰田合成、美国的CREE、德国的欧司朗等,所以白光LED的推广应用,尤其是高亮度白光LED在我国的推广还有一个过程。
以家人之名预告2、 白光LED的工艺结构和白光源。 对于一般照明,在工艺结构上,白光LED通常采用两种方法形成。第一种是利用“蓝光技术”与荧光粉配合形成白光;第二种是多种单光混合方法。这两种
方法都已能成功产生白光器件。第一种方法产生白光的系统如图1所示,图中LEDGaM芯片发蓝光(λp=465NM),它和YAG(钇铝石榴石)荧光粉封装在一起,当荧光粉受蓝光激发后发出黄光,结果,蓝光和黄光混合形成白光(构成LED的结构如图2所示)。第二种方法采用不同光的芯片封装在一起,通过各光混合而产生白光。
3、白光LED照明新光源的应用前景。 为了说明白光LED的特点,先看看目前所用的照明灯光源的状况。白炽灯和卤钨灯,其光效为12~24流明/瓦;荧光灯和HID灯的光效为50~120流明/瓦。对白光LED:在1998年,白光LED的光效只有5流明/瓦,到了1999年已达到15流明/瓦,这一指标与一般家
用白炽灯相近,而在2000年时,白光LED的光效已达25流明/瓦,这一指标与卤钨灯相近。有公司预测,到2005年,LED的光效可达50流明/瓦,到2015年时,LED的光效可望达到150~200流明/瓦。那时的白光LED的工作电流就可达安培级。由此可见开发白光LED作家用照明光源,将成可能的现实。
普通照明用的白炽灯和卤钨灯虽价格便宜,但光效低(灯的热效应白白耗电),寿命短,维护工作量大,但若用白光LED作照明,不仅光效高,而且寿命长(连续工作时间100000小时以上),几乎无需维护。目前,德国Hella公司利用白光LED开发了飞机阅读灯;澳大利亚首都堪培拉的一条街道已用了白光LED作路灯照明;我国的城市交通管理灯也正用白光LED取代早期的交通秩序指示灯。可以预见不久的将来,白光LED定会进入家庭取代现有的照明灯。
LED光源具有使用低压电源、耗能少、适用性强、稳定性高、响应时间短、对环境无污染、多发光等的优点,虽然价格较现有照明器材昂贵,仍被认为是它将不可避免地现有照明器件。
---------------------------------------------------------------
薄膜晶体管李云迪和朗朗谁的成就更高
Thin Film Transistor (薄膜场效应晶体管),是指液晶显示器上的每一液晶象素点都是由集成在其后的薄膜晶体管来驱动。从而可以做到高速度高亮度高对比度显示屏幕信息。TFT属于有源矩阵液晶显示器。
补充:TFT(ThinFilmTransistor)是指薄膜晶体管,意即每个液晶像素点都是由集成在像素点后面的薄膜晶体管来驱动,从而可以做到高速度、高亮度、高对比度显示屏幕信息,是目前最好的LCD彩显示设备之一,其效果接近CRT显示器,是现在笔记本电脑和台式机上的主流显示设备。TFT的每个像素点都是由集成在自身上的TFT来控制,是有源像素点。因此,不但速度可以极大提高,而且对比度和亮度也大大提高了,同时分辨率也达到了很高水平。
TFT ( Thin film Transistor
,薄膜晶体管)屏幕,它也是目前中高端彩屏手机中普遍采用的屏幕,分65536 及26 万,1600万三种,其显示效果非常出。
TFT技术解析
TFT(Thin Film Transistor)LCD即薄膜场效应晶体管LCD,是有源矩阵类型液晶显示器(AM-LCD)中的一种。
和TN技术不同的是,TFT的显示采用“背透式”照射方式——假想的光源路径不是像TN液晶那样从上至下,而是从下向上。这样的作法是在液晶的背部设置特殊光管,光源照射时通过下偏光板向上透出。由于上下夹层的电极改成FET电极和共通电极,在FET电极导通时,液晶分子的表现也会发生改变,
可以通过遮光和透光来达到显示的目的,响应时间大大提高到80ms左右。因其具有比TN-LCD更高的对比度和更丰富的彩,荧屏更新频率也更快,故TFT俗称“真彩”。
相对于DSTN而言,TFT-LCD的主要特点是为每个像素配置一个半导体开关器件。由于每个像素都可以通过点脉冲直接控制。因而每个节点都相对独立,并可以进行连续控制。这样的设计方法不仅提高了显示屏的反应速度,同时也可以精确控制显示灰度,这就是TFT彩较DSTN更为逼真的原因。
目前,绝大部分笔记本电脑厂商的产品都采用TFT-LCD。早期的TFT-LCD主要用于笔记本电脑的制造。尽管在当时TFT相对于DSTN具有极大的优势,但是由于技术上的原因,TFT-LCD在响应时间、亮度及可视角度上与传统的CRT显示器还有很大的差距。加上极低的成品率导致其高昂的价格,使得桌面型的TFT-LCD成为遥不可及的尤物。
不过,随着技术的不断发展,良品率不断提高,加上一些新技术的出现,使得TFT-LCD在响应时间、对比度、亮度、可视角度方面有了很大的进步,拉近了与传统CRT显示器的差距。如今,大多数主流LCD显示器的响应时间都提高到50ms以下,这些都为LCD走向主流铺平了道路。
LCD的应用市场应该说是潜力巨大。但就液晶面板生产能力而言,全世界的LCD主要集中在、韩国和日本三个主要生产基地。亚洲是LCD面板研发及生产制造的中心,而台、日、韩三大产地的发展情况各有不同。
邬目前主流的TFT面板有a-Si(非晶硅薄膜晶体管)
TFT-LCD技术
一、前言
进入新千年,作为信息产业的重要构成部分—显示器件正在加速推进其平板化的进程。目前,世界已进入“信息革命”时代,显示技术及显示器件在信息技术的发展过程中占据了十分重要的地位,电视、电脑、移动电话、BP机、PDA等可携式设备以及各类仪器仪表上的显示屏为人们的日常生活和工作提供着大量的信息。没有显示器,就不会有当今迅猛发展的信
息技术。显示器集电子、通信和信息处理技术于一体,被认为是电子工业在20世纪微电子、计算机之后的又一重大发展机会。
科学技术的发展日新月异,显示技术也在发生一场革命,特别是自90年代以来,随着技术的突破及市场需求的急剧增长,使得以液晶显示(LCD)为代表的平板显示(FPD)技术迅速崛起。据Stanford公司预测,FPD市场规模正在以年增长率16.2%的速度发展着,到2000年FPD和CRT的产业都达到300亿美元,CRT平均年增长率不足6.3%,远低于FED的平均增长率,且FPD增长率仍在继续提高,CRT在继续下降,替代趋势十分明朗,可以说平板显示将成为21世纪显示技术的主流,其产业和市场在不断扩增之中。
经过二十多年的研究、竞争、发展,平板显示器已进入角,成为新世纪显示器的主流产品,目前竞争最激烈的平板显示器有四个品种:
养老保险继承1、场致发射平板显示器(FED);
2、等离子体平板显示器(PDP); 南昌市邮编
3、有机薄膜电致发光器(OEL);
4、薄膜晶体管液晶平板显示器(TFT-LCD) 。
场发射平板显示器原理类似于CRT,CRT只有一支到三支电子,最多六支,而场发射显示器是采用电子阵列(电子发射微尖阵列,如金刚石膜尖锥),分辨率为VGA(640×480×3)的显示器需要92.16万个性能均匀一致的电子发射微尖,材料工艺都需要突破。目前美国和法国有小批量的小尺寸的显示屏生产,用于国防军工,离工业化、商业化还很远。
等离子体发光显示是通过微小的真空放电腔内的等离子放电激发腔内的发光材料形成的,发光效应低和功耗大是它的缺点(仅1.2lm/W,而灯用发光效率达80lm/W以上,6瓦/每平方英寸显示面积),但在102~152cm对角线的大屏幕显示领域有很强的竞争优势。业内专家分析认为,CRT、LCD和数字微镜(DMD)3种投影显示器可以与PDP竞争,从目前大屏幕电视机市场来看,CRT投影电视价格比PD
P便宜,是PDP最有力的竞争对手,但亮度和清晰度不如PDP,LCD和DMD投影的象素和价格目前还缺乏竞争优势。尽管彩PDP在像质、显示面积和容量等方面有了明显提高,但其发光效率、发光亮度、对比度还达不到直观式彩电视机的要求,最重要的是其价格还不能被广大家用消费者所接受,这在一定程度上制约了彩PDP市场拓展。目前主要在公众媒体展示场合应用开始普遍起来。
半导体发光二极管(LED)的显示方案由于GaN蓝发光二极管的研制成功,从而一举获得了超大屏幕视频显示器市场的绝对控制权,但是这种显示器只适合做户外大型显示,在中小屏幕的视频显示器也没有它的市场。
显示器产业的专家一直期望有
发布评论