2014年广东省高考数学试卷(文科)
一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}
2.(5分)已知复数z满足(3﹣4i)z=25,则z=()
A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i
3.(5分)已知向量=(1,2),=(3,1),则﹣=()
A.(﹣2,1)B.(2,﹣1)C.(2,0) D.(4,3)
4.(5分)若变量x,y满足约束条件,则z=2x+y的最大值等于()
A.7 B.8 C.10 D.11
5.(5分)下列函数为奇函数的是()
A.2x﹣B.x3sinx C.2cosx+1 D.x2+2x
6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()
A.50 B.40 C.25 D.20
7.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“s inA ≤sinB”的()
A.充分必要条件B.充分非必要条件
C.必要非充分条件 D.非充分非必要条件
8.(5分)若实数k满足0<k<5,则曲线﹣=1与﹣=1的()
A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等
9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()
A.l1⊥l4B.l1∥l4
C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定
10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω12,其中2是ω2的共轭复数,对任意复数z1,z2,z3有如下命题:
①(z1+z2)*z3=(z1*z3)+(z2*z3)
②z1*(z2+z3)=(z1*z2)+(z1*z3)
③(z1*z2)*z3=z1*(z2*z3);
④z1*z2=z2*z1
则真命题的个数是()
A.1 B.2 C.3 D.4
二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11-13题)
11.(5分)曲线y=﹣5e x+3在点(0,﹣2)处的切线方程为.
12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.
13.(5分)等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.
(二)(14-15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.
【几何证明选讲选做题】
15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.
广东2014高考
四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)
16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.
(1)求A的值;
(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).
17.(13分)某车间20名工人年龄数据如下表:
(1)求这20名工人年龄的众数与极差;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.
18.(13分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.
(1)证明:CF⊥平面MDF;
(2)求三棱锥M﹣CDE的体积.
19.(14分)设各项均为正数的数列{a n}的前n项和为S n满足S n2﹣(n2+n﹣3)S n﹣3(n2+n)=0,n∈N*.
(1)求a1的值;
(2)求数列{a n}的通项公式;
(3)证明:对一切正整数n,有++…+<.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.
(1)求椭圆C的标准方程;
(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.
21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).
(1)求函数f(x)的单调区间;
(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x0)=f().
2014年广东省高考数学试卷(文科)
参考答案与试题解析
一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}
【分析】根据集合的基本运算即可得到结论.
【解答】解:∵M={2,3,4},N={0,2,3,5},
∴M∩N={2,3},
故选:B.
【点评】本题主要考查集合的基本运算,比较基础.
2.(5分)已知复数z满足(3﹣4i)z=25,则z=()
A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i
【分析】由题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.
【解答】解:∵满足(3﹣4i)z=25,则z===3+4i,
故选:D.
【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.
3.(5分)已知向量=(1,2),=(3,1),则﹣=()
A.(﹣2,1)B.(2,﹣1)C.(2,0) D.(4,3)
【分析】直接利用向量的减法的坐标运算求解即可.
【解答】解:∵向量=(1,2),=(3,1),
∴﹣=(2,﹣1)
故选:B.
发布评论