(完整word版)湘教版八年级数学上册复习提纲
八年级数学上册复习提纲
第一章 实数
1。平方根和算术平方根的概念及其性质:
(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。
(2)性质:①当≥0时,≥0;当<0时,无意义;
②=;③。
2。立方根的概念及其性质:
(1)概念:若,那么是的立方根,记作:;
(2)性质:①;②;③=
3。实数的概念及其分类:
(1)概念:实数是有理数和无理数的统称;
(2)分类:按定义分为有理数可分为整数和分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。(书上有图)
4、无理数:无限不循环小数
5。与实数有关的概念:
6。算术平方根的运算律: (≥0,≥0); (≥0,>0)。
平面直角坐标系知识点归纳总结
1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;
2、坐标平面上的任意一点P的坐标,都和惟一的一对 有序实数对()一一对应;
3、轴上的点,纵坐标等于0;轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;
4、四个象限的点的坐标具有如下特征:
象限 | 横坐标X | 纵坐标Y |
第一象限 | 正 | 正 |
第二象限 | 负 | 正 |
第三象限 | 负 | 负 |
第四象限 | 正 | 负 |
5、在平面直角坐标系中,已知点P,则
(1) 点P到轴的距离为; (2)点P到轴的距离为;
(3) 点P到原点O的距离为PO=
6、平行直线上的点的坐标特征:
a)在与轴平行的直线上, 所有点的纵坐标相等;
b)
Y
在与轴平行的直线上,所有点的横坐标相等;7、对称点(轴反射)的坐标特征:
c)点P关于轴的对称点为, 即横坐标不变,纵坐标互为相反数;
d)点P关于轴的对称点为,即纵坐标不变,横坐标互为相反数;
e)点P关于原点的对称点为,即横、纵坐标都互为相反数;
8、两条坐标轴夹角平分线上的点的坐标的特征:
若点P()在第一、三象限的角平分线上,则,即横、纵坐标相等;
若点P()在第二、四象限的角平分线上,则,即横、纵坐标互为相反数;
9、点坐标与图形平移的关系:
左右平移纵坐标不变,横坐标右加左减
上下平移横坐标不变,纵坐标上加下减
有关实数的题型:(平方根、立方根、实数、平面直角坐标系)
1.(2011•日照)(-2)2的算术平方根是( )
A.2 B.±2 C.-2 D.
2.(2011•黔西南州)16的平方根是( )
A.8 B.4 C.±4 D.±2
3.(2011•泸州)25的算术平方根是( )
A.5 B.-5 C.±5 D.
4.(2011•杭州)下列各式中,正确的是( )
A.=-3 B.- =-3 C.=±3 D.=±3
5.(2011•成都)4的平方根是( )
A.±16 B.16 C.±2 D.2
6.(2009•潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是( )
八年级上册政治复习提纲A.a+1 B.a2+1 C. D.
7.(2007•湘潭)下列计算正确的( )
A.x2•x3=x6 B.(x-1)2=x2-1 C.=-3 D.3x2y-x2y=2x2y
8.(2002•烟台)(-2)2的平方根是( )
A.2 B.-2 C.± D.±2
9.(1998•台州)下列运算正确的是( )
A. =7 B.(a+b)2=a2+b2 C.|2-π|=π-2 D.(a2)3=a5
第二章 一次函数
1、常量、变量:
在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;
2、一次函数定义:
一般地,形如y=kx (k为常数,且k≠0)的函数叫做正比例函数。其中k叫做比例系数。
一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数。
当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例。
3、函数中自变量取值范围的求法:
(1)一次函数k值不等于0
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)根号下面数大于等于0
(4)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
4、作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式。
函数三种表示形式:(1)列表法 (2)图像法 (3)解析式法
5、正比例函数图象性质:经过;>0时,经过一、三象限;<0时,经过二、四象限。6。一次函数图象性质:
(1)当>0时,随的增大而增大,图象呈上升趋势;
当<0时,随的增大而减小,图象呈下降趋势。
(2)直线与Y轴的交点为,与轴的交点为 。
(3)在一次函数中:>0,>0时函数图象经过一、二、三象限;
>0,<0时函数图象经过一、三、四象限;
<0,>0时函数图象经过一、二、四象限;
<0,<0时函数图象经过二、三、四象限。
(4)在两个一次函数中,当它们的值相等时,其图象平行;当它们的值不等时,其图象相交;当它们的值乘积为时,其图象垂直。
7、已知任意两点求一次函数的表达式(待定系数法)、根据图象解二元一次方程组(图像法,两直线的交点就是方程组的解)。
发布评论