宋元数学四大家的代表作及贡献
宋元数学在很多领域都达到了中国古代数学,甚至是当时世界数学的巅峰。其中主要的工作有:(1)高次方程数值解法;(2)天元术与四元术,即高次方程的立法与解法,是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题;(3)大衍求一术,即一次同余式组的解法,现在称为中国剩余定理;(4)招差术和垛积术,即高次内插法和高阶等差级数求和。 另外,其它成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图(幻方)的研究、小数(十进分数)具体的应用、珠算的出现等等。
宋元两代,我国古代数学在汉唐基础上又有了发展,涌现了秦九韶、李冶、杨辉、朱世杰四大数学家。其代表作主要有:秦九韶的《数书九章》(1247),李冶的《测圆海镜》(1248)和《益古演段》(1259),杨辉的《详解九章算法》(1261)、《日用算法》(1262)和《杨辉算法》(1274-1275,朱世杰的《算学启蒙》(1299)和《四元玉鉴》(1303)等等。
秦九韶,字道古,四川普州(今安岳县)人,主要著作是南宋理宗淳七年(1247年)完成的《数书九章》,全书共18卷,81个问题。书中有一个著名的“遥测圆城”的问题,这个问题给
出了一个圆形外围的直角三角形的某些条件,求圆的直径。秦九韶列出了一个十次方程来解决这个问题,并且提出了高次方程的数值解法———“正负开方术”。秦九韶还提出了联立一次同余式的解法———“大衍求一术”, 现在称为中国剩余定理。秦九韶的大衍求一术,将“物不知数”问题推广为一般同余式组解法,实现了理论上的飞跃。这两项贡献使得宋代算书在中世纪世界数学史上占有突出的地位。
李冶,真定栾城(今河北栾城)人。代表作为《测圆海镜》,该书共12卷,170问,都是有关已知直角三角形中某些线段,求内切圆和旁切圆直径的。该书看似几何书,却叙述了一种普遍的列写代数方程的方法,即“天元术”。 天元术与四元术,即高次方程的立法与解法,是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。天元术引入了代表未知数的符号,于是任意的数学高次方程都可以表示为与近代数学一致的普遍形式。李冶还掌握了将分式方程化为整式方程的方法。
杨辉,浙江钱塘(今杭州)人。主要著有《详解九章算法》、《日用算法》、《乘除通变算宝》、《田亩比类乘除捷法》等。杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。杨辉受沈括将堆积的酒坛类比于层坛体积的做法启示,正式提出了“比类”一词(即“比照类推”),并在
李冶,真定栾城(今河北栾城)人。代表作为《测圆海镜》,该书共12卷,170问,都是有关已知直角三角形中某些线段,求内切圆和旁切圆直径的。该书看似几何书,却叙述了一种普遍的列写代数方程的方法,即“天元术”。 天元术与四元术,即高次方程的立法与解法,是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。天元术引入了代表未知数的符号,于是任意的数学高次方程都可以表示为与近代数学一致的普遍形式。李冶还掌握了将分式方程化为整式方程的方法。
杨辉,浙江钱塘(今杭州)人。主要著有《详解九章算法》、《日用算法》、《乘除通变算宝》、《田亩比类乘除捷法》等。杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。杨辉受沈括将堆积的酒坛类比于层坛体积的做法启示,正式提出了“比类”一词(即“比照类推”),并在
《详解九章算法》的“商功”部分中,分别将隅垛、方垛、三角垛与《九章算术》中的方锥、方亭、鳖 相比类,得到了几个重要的多阶等差级数公式。杨辉的著作中还介绍了许多他人的数学成果,例如改革筹算乘除运算的“以加代乘”法和“以减代除”法,以及当时的一些乘法口诀。最为重要的是,他记录了北宋数学家贾宪的一个三角数表。这个数表实际上就是二项式展开的系数表,(a+b)2、(a+b)3的展开各项系数均可以在数表的第三四行到。这个表通常被称做“杨辉三角”,它完全等同于法国数学家帕斯卡1653年提出的“帕斯卡三角”。由于该数表有丰富的数学内涵,所以至今仍为人们所重视。
他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。
朱世杰,四大名家中,朱世杰堪称一位集大成者。朱世杰(公元1300前后),自号松庭,燕山(今北京一带)人,是一位平民数学家和数学教育家。在14世纪初,他将解一个未知数方程的天元术,发展成了有四个未知数的方程组的解法———四元术;他还将三角垛的公式引用到招差术中,得到包含四次差的招差公式,并且可以推广到任意高次。朱世杰对球体表面积问题也作过探讨,虽然未成功,却是中国数学史上惟一一次探讨这一问题。可以说,他将中国古代数学推上了一个前所未有的高峰。
朱世杰,四大名家中,朱世杰堪称一位集大成者。朱世杰(公元1300前后),自号松庭,燕山(今北京一带)人,是一位平民数学家和数学教育家。在14世纪初,他将解一个未知数方程的天元术,发展成了有四个未知数的方程组的解法———四元术;他还将三角垛的公式引用到招差术中,得到包含四次差的招差公式,并且可以推广到任意高次。朱世杰对球体表面积问题也作过探讨,虽然未成功,却是中国数学史上惟一一次探讨这一问题。可以说,他将中国古代数学推上了一个前所未有的高峰。
韶 宋元数学虽然达到了顶峰,但也存在着严重的危机。一方面,对数学社会需要的增加,并没有导致占统治地位的社会意识的变化。数学仍被认为是“九九贱技”。数学家们在思想上受着压抑。虽然他们在社会下层受到尊重,但是当他们面对上流社会时,总难免自卑自贱。数学四大家在为自己著作写的序言中都流露了这种感情。另一方面,把数学纳入阴阳五行论的轨道是宋元时期数学的一大特点。由于受宋元时期哲学上的客观唯心论的影响,数学被导向神秘化。因此,从元末以后,中国数学除珠算以外,发展缓慢,明末以后,中国数学已经落后于世界先进水平。 总的说来,在中世纪长达一千多年的时期内,由于欧洲的科学一直处于萧条和不景气局面,科学的中心转移到了东方,于是数学也随之而进入了“东方的发展阶段”。当时的东方国家,如中国、阿拉伯各国和印度,在数学上都取得了相当高的成就。而这一时期的欧洲,没有特别重大的数学发现,主要是吸收古代世界和东方的数学遗产的时期。
秦、李、杨、朱四大名家的数学成果,诸如正负开方术、天元术、四元术、大衍求一术、垛积术和招差术,都是具有开创意义的数学成就,西方类似成就的出现要晚数百年。但宋元时期大数学家绝非仅此四人。此外如贾宪、刘益、沈括等人都作出了重要贡献,“四大家”的成就是直接以他们的成就为基础的。所以,四大家的成就代表的是当时中华民族所达
到的科学文化水平。宋元时期,是我国传统数学的一个黄金时期。宋元四大家为我国古代数学史上的巅峰人物,在全世界也是屈指可数的。
发布评论